The potential energy curve of the fluorine molecule in the ground electronic state Σ1g+ is determined and analyzed in the long-range region. The analysis is based on expressing the potential as the sum of the potential energy curve of the uncorrelated, but properly dissociating wave function and the correlation energy contribution. It is shown that, in the long-range region, the former becomes identical with the interaction between the quadrupoles of the fluorine atoms and the latter becomes the London dispersion interaction. The former is repulsive because of the coaxial quadrupole alignments in the Σ1g+ ground state and proportional to 1/R5. The latter is attractive and proportional to 1/R6. There moreover exists an additional repulsive force due to the loss of spin-orbit coupling upon the bond formation. As a result of these antagonistic interactions, the potential energy curve has a barrier at about 4 Å, with a value about +0.04mhartree. The descent of the potential toward the minimum, when the atoms approach each other from infinity, begins therefore only at internuclear distances less than about twice the equilibrium distance and is then very steep.

1.
J. D.
van der Waals
,
On the continuity of the gaseous and the liquid state
(Dissertation,
University of Leiden
,
Netherlands
,
1873
).
2.
M.
Reinganum
,
Ann. Phys.
10
,
335
(
1903
);
3.
W. H.
Keesom
,
Phys. Z.
22
,
129
(
1921
).
4.
F.
London
,
Trans. Faraday Soc.
33
,
8b
(
1937
).
5.
H.
Margenau
,
Rev. Mod. Phys.
11
,
1
(
1939
).
6.
J. O.
Hirschfelder
, Ed.,
Advances in Chemical Physics
, Vol.
12
, (
Wiley
, New York,
1967
).
7.
A. D.
Buckingham
,
P. W.
Fowler
, and
J. M.
Hudson
,
Chem. Rev. (Washington, D.C.)
88
,
963
(
1988
).
8.
G.
Chałasiński
and
M. M.
Szczęśniak
,
Chem. Rev. (Washington, D.C.)
100
,
4227
(
2000
).
9.
G. C.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces, Their Origin and Determination
(
Clarendon
,
Oxford
,
1981
).
10.
J. O.
Hirschfelder
,
C. F.
Curtis
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1964
), corrected printing.
11.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Clarendon
,
Oxford
,
1996
).
12.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
110
,
10656
(
2006
).
13.
M.
Pitoňák
,
K. E.
Riley
,
P.
Neogrády
, and
P.
Hobza
,
ChemPhysChem
9
,
1636
(
2008
).
14.
T.
Ishikawa
,
Y.
Mochizuki
,
S.
Amari
,
T.
Nakano
, and
S.
Tanaka
,
Chem. Phys. Lett.
463
,
189
(
2008
).
15.
W. H.
Stockmayer
,
J. Chem. Phys.
9
,
398
(
1941
).
16.
W.
Jin
and
W.
Wang
,
J. Chem. Phys.
114
,
10163
(
2001
).
17.
18.
T. Y.
Chang
,
Rev. Mod. Phys.
39
,
911
(
1967
).
19.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
S. P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D.
Garmer
,
H.
Basch
, and
D.
Cohen
,
J. Chem. Phys.
105
,
1968
(
1996
).
20.
M. S.
Gordon
,
M. A.
Freitag
,
P.
Bandyopadhyay
,
J. H.
Jensen
,
V.
Kairys
, and
W. J.
Stevens
,
J. Phys. Chem. A
105
,
293
(
2001
).
21.
L. V.
Slipchenko
and
M. S.
Gordon
,
J. Comput. Chem.
28
,
276
(
2007
).
22.
S. C.
Wang
,
Phys. Z.
28
,
663
(
1928
).
23.
R. J.
Le Roy
,
Mol. Spectrosc. (Chem. Soc., London)
1
,
113
(
1973
).
24.
R.
Rydberg
,
Z. Phys.
73
,
376
(
1931
).
26.
A. L. G.
Rees
,
Proc. Phys. Soc. London
59
,
998
(
1947
).
27.
See also
J. F.
Ogilvie
,
The Vibrational and Rotational Spectrometry of Diatomic Molecules
(
Academic
,
New York
,
1998
).
28.
E. A.
Colbourn
,
M.
Dagenais
,
A. E.
Douglas
, and
J. W.
Raymonda
,
Can. J. Phys.
54
,
1343
(
1976
).
29.
L.
Bytautas
,
T.
Nagata
,
M. S.
Gordon
, and
K.
Ruedenberg
,
J. Chem. Phys.
127
,
164317
(
2007
).
30.
L.
Bytautas
,
N.
Matsunaga
,
T.
Nagata
,
M. S.
Gordon
, and
K.
Ruedenberg
,
J. Chem. Phys.
127
,
204301
(
2007
).
31.
L.
Bytautas
,
N.
Matsunaga
,
T.
Nagata
,
M. S.
Gordon
, and
K.
Ruedenberg
,
J. Chem. Phys.
127
,
204313
(
2007
).
32.
See EPAPS Document No. E-JCPSA6-130-041921 for supplemental tables and figures. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
33.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
128
,
214308
(
2008
).
34.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
35.
H. B.
Jansen
and
P.
Ros
,
Chem. Phys. Lett.
3
,
140
(
1969
).
36.
F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
37.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev. (Washington, D.C.)
94
,
1873
(
1994
).
38.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
39.
H. -J.
Werner
,
P. J.
Knowles
,
J.
Almlöf
,
R.
Lindh
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
G.
Rauhut
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
C.
Hampel
,
G.
Hetzer
,
A. W.
Lloyd
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklaß
,
P.
Palmieri
,
R.
Pitzer
,
U.
Schumann
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
, and
T.
Thorsteinsson
, MOLPRO, a package of ab initio programs.
40.
G. L.
Gutsev
,
P.
Jena
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
291
,
547
(
1998
).
41.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
42.
P. O.
Widmark
,
P. A.
Malmquist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
43.
M.
Medved
,
P. W.
Fowler
, and
J. M.
Hutson
,
Mol. Phys.
98
,
453
(
2000
).
44.
S. P. J.
Rodrigues
and
A. J. C.
Varandas
,
Phys. Chem. Chem. Phys.
2
,
435
(
2000
).
45.
B. O.
Roos
and
A. J.
Sadlej
,
Chem. Phys.
94
,
43
(
1985
).
46.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
47.
F. A.
Evangelista
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
127
,
024102
(
2007
).
48.
J.
Mášik
,
I.
Hubač
, and
P.
Mach
,
J. Chem. Phys.
108
,
6571
(
1998
).
49.
T. D.
Crawford
and
H. F.
Schaefer
 III
,
Rev. Comput. Chem.
14
,
33
(
2000
).
50.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
51.
T.
van Mourik
,
A. K.
Wilson
, and
T. H.
Dunning
, Jr.
,
Mol. Phys.
96
,
529
(
1999
).
52.
S. M.
Cybulski
and
R. R.
Toczyłowski
,
J. Chem. Phys.
111
,
10520
(
1999
).
53.
R. J.
Gdanitz
,
Chem. Phys. Lett.
348
,
67
(
2001
).
54.
A.
Monari
,
G. L.
Bendazzoli
,
S.
Evangelisti
,
C.
Angeli
,
N.
Ben Amor
,
S.
Borini
,
D.
Maynau
, and
E.
Rossi
,
J. Chem. Theory Comput.
3
,
477
(
2007
).
55.
A. J. W.
Thom
,
G. H.
Booth
, and
A.
Alavi
,
Phys. Chem. Chem. Phys.
10
,
652
(
2008
).
56.
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
,
Mol. Phys.
106
,
133
(
2008
).
57.
A. K.
Wilson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
106
,
8718
(
1997
).
59.
J. S.
Lee
and
S. Y.
Park
,
J. Chem. Phys.
112
,
10746
(
2000
).
60.
A. J. C.
Varandas
,
J. Phys. Chem. A
112
,
1841
(
2008
).
61.
A. J. C.
Varandas
,
Phys. Scr.
76
,
C28
(
2007
).
62.
R. A.
Aziz
and
M.
Slaman
,
Chem. Phys.
130
,
187
(
1989
).
63.
The contribution of the quadruple excitations was calculated by the CEEIS procedure. See Refs. 64–69.
64.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
121
,
10905
(
2004
).
65.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
121
,
10919
(
2004
).
66.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
121
,
10852
(
2004
).
67.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
122
,
154110
(
2005
).
68.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
124
,
174304
(
2006
).
69.
M. S.
Gordon
,
K.
Ruedenberg
,
M. W.
Schmidt
,
L.
Bytautas
,
T. J.
Dudley
,
T.
Nagata
,
R.
Olson
, and
S.
Varganov
,
J. Phys.: Conf. Ser.
46
,
229
(
2006
).
70.
X.
Chu
and
A.
Dalgarno
,
J. Chem. Phys.
121
,
4083
(
2004
).
71.
O.
Zatsarinny
,
K.
Bartschat
,
J.
Mitroy
, and
J. -Y.
Zhang
,
J. Chem. Phys.
130
,
124310
(
2009
).
72.
A.
Dalgarno
,
Adv. Chem. Phys.
12
,
143
(
1967
).
73.
J.
Mitroy
and
J. -Y.
Zhang
,
Phys. Rev. A
76
,
062703
(
2007
).
74.
V. H.
Smith
, Jr.
, and
A. J.
Thakkar
,
Chem. Phys. Lett.
17
,
274
(
1972
).
75.
A. J.
Thakkar
and
V. H.
Smith
, Jr.
,
Mol. Phys.
27
,
191
(
1974
).
76.
A. J.
Thakkar
and
V. H.
Smith
, Jr.
,
Mol. Phys.
27
,
593
(
1974
).
77.
A. J.
Thakkar
and
V. H.
Smith
, Jr.
,
J. Phys. B
7
,
L321
(
1974
).
78.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
118
,
4976
(
2003
).
79.
L. B.
Knight
, Jr.
,
W. E.
Rice
,
L.
Moore
,
E. R.
Davidson
, and
R. S.
Dailey
,
J. Chem. Phys.
109
,
1409
(
1998
).
80.
L. B.
Knight
, Jr.
,
B. A.
Bell
,
D. P.
Cobranchi
, and
E. R.
Davidson
,
J. Chem. Phys.
111
,
3145
(
1999
).
81.
T.
Helgaker
,
W.
Klopper
, and
D. P.
Tew
,
Mol. Phys.
106
,
2107
(
2008
).
82.
N.
Gilka
,
P. R.
Taylor
, and
C. M.
Marian
,
J. Chem. Phys.
129
,
044102
(
2008
).
83.
G.
Herzberg
,
Atomic Spectra and Atomic Structure
(
Dover
,
New York
,
1944
).
84.
J. B.
Lounsbury
,
J. Chem. Phys.
46
,
2193
(
1967
).
85.
S. R.
Langhoff
,
J. Chem. Phys.
61
,
3881
(
1974
).
86.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1288
(
1974
).
87.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
125
,
164107
(
2006
).
88.
A. J. C.
Varandas
,
Chem. Phys. Lett.
443
,
398
(
2007
).
89.
F. A.
Evangelista
,
A. C.
Simmonett
,
H. F.
Schaefer
 III
,
D.
Mukherjee
, and
W. D.
Allen
,
A companion perturbation theory for state-specific multireference coupled cluster methods
,
Phys. Chem. Chem. Phys.
(in press).
90.
A.
Marte
,
T.
Volz
,
J.
Schuster
,
S.
Dürr
,
G.
Rempe
,
E. G. M.
van Kempen
, and
B. J.
Verhaar
,
Phys. Rev. Lett.
89
,
283202
(
2002
).
91.
J.
Doyle
,
B.
Friedrich
,
R. V.
Krems
, and
F.
Masnou-Seeuws
,
Eur. Phys. J. D
31
,
149
(
2004
).
92.
D. W.
Chandler
and
K. E.
Strecker
,
ChemPhysChem
10
,
751
(
2009
).
93.
B.
Friedrich
and
J. M.
Doyle
,
ChemPhysChem
10
,
604
(
2009
).
94.
R.
McWeeny
,
Int. J. Quantum Chem., Symp.
24
,
733
(
1990
).
95.
C. P.
Byrman
and
J. H.
van Lenthe
,
Int. J. Quantum Chem.
58
,
351
(
1996
).

Supplementary Material

You do not currently have access to this content.