Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao et al, J. Phys. Chem. A110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling <10meV for quaterthiophene and <5meV for sexithiophene. It is shown that the present approach can be applied to design organic semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.

1.
R. G.
Kepler
,
P. E.
Bierstedt
, and
R. E.
Merrifeld
,
Phys. Rev. Lett.
5
,
503
(
1960
);
F.
Gutman
and
L. E.
Lyons
,
Organic Semiconductors
(
Wiley
,
New York
,
1967
);
W.
Mey
,
T. J.
Sonnonstine
,
D. L.
Morel
, and
A. M.
Hermann
,
J. Chem. Phys.
58
,
2542
(
1973
).
2.
M.
Pope
and
C. E.
Swenberg
,
Electronic Processes in Organic Crystals and Polymers
, 2nd ed. (
Oxford University Press
,
New York
,
1999
).
3.
E. A.
Silinsh
and
V.
Capek
,
Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena
(
AIP
,
New York
,
1994
).
4.
M. E.
Gershenson
,
V.
Podzorov
, and
A. F.
Morpurgo
,
Rev. Mod. Phys.
78
,
973
(
2006
);
S.
Günes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev. (Washington, D.C.)
107
,
1324
(
2007
).
5.
J. L.
Brédas
,
J. P.
Calbert
,
D. A.
da Silva Filho
, and
J.
Cornil
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
5804
(
2002
).
6.
A. J.
Epstein
,
W. P.
Lee
, and
V. N.
Prigodin
,
Synth. Met.
117
,
9
(
2001
).
7.
(a)
G. R.
Hutchison
,
M. A.
Ratner
, and
T. J.
Marks
,
J. Am. Chem. Soc.
127
,
16866
(
2005
);
[PubMed]
(b)
N.
Karl
,
Synth. Met.
133–134
,
649
(
2003
);
(c)
L. J.
Wang
,
Q.
Peng
,
Q. K.
Li
, and
Z.
Shuai
,
J. Chem. Phys.
127
,
044506
(
2007
);
[PubMed]
(d)
K.
Hannewald
and
P. A.
Bobbert
,
Appl. Phys. Lett.
85
,
1535
(
2004
);
(e)
V.
Podzorov
,
E.
Menard
,
J. A.
Rogers
, and
M. E.
Gershenson
,
Phys. Rev. Lett.
95
,
226601
(
2005
).
[PubMed]
8.
(a)
O. D.
Jurchescu
,
J.
Baas
, and
T. T. M.
Palstra
,
Appl. Phys. Lett.
84
,
3061
(
2004
);
(b)
H.
Klauk
,
D. J.
Gundlach
,
J. A.
Nichols
, and
T. N.
Jackson
,
IEEE Trans. Electron Devices
46
,
1258
(
1999
).
9.
D. A.
da Silva Filho
,
E. G.
Kim
, and
J. L.
Brédas
,
Adv. Mater. (Weinheim, Ger.)
17
,
1072
(
2005
).
10.
S.
Nagamatsu
,
K.
Kaneto
,
R.
Azumi
,
M.
Matsumoto
,
Y. J.
Yoshida
, and
K.
Yase
,
J. Phys. Chem. B
109
,
9374
(
2005
);
[PubMed]
M.
Melucci
,
M.
Gazzano
,
G.
Barbarella
,
M.
Cavallini
,
F.
Biscarini
,
P.
Maccagnani
, and
P.
Ostoja
,
J. Am. Chem. Soc.
125
,
10266
(
2003
);
[PubMed]
X. M.
Hong
,
H. E.
Katz
,
A. J.
Lovinger
,
B. C.
Wang
, and
K.
Raghavachari
,
Chem. Mater.
13
,
4686
(
2001
);
M. E.
Hajlaoui
,
F.
Garnier
,
L.
Hassine
,
F.
Kouki
, and
H.
Bouchriha
,
Synth. Met.
129
,
215
(
2002
).
11.
Y. C.
Cheng
,
R. J.
Silbey
,
D. A.
da Silva Filho
,
J. P.
Calbert
,
J.
Cornil
, and
J. L.
Brédas
,
J. Chem. Phys.
118
,
3764
(
2003
).
12.
G.
Horowitz
,
R.
Hajlaoui
,
R.
Bourguiga
, and
M.
Hajlaoui
,
Synth. Met.
101
,
401
(
1999
).
13.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
14.
Y. A.
Berlin
,
G. R.
Hutchison
,
P.
Rempala
,
M. A.
Ratner
, and
J.
Michl
,
J. Phys. Chem. A
107
,
3970
(
2003
);
W. Q.
Deng
and
W. A.
Goddard
III
,
J. Phys. Chem. B
108
,
8614
(
2004
);
Y. B.
Song
,
C. A.
Di
,
X. D.
Yang
,
S. P.
Li
,
W.
Xu
,
Y. Q.
Liu
,
L. M.
Yang
,
Z. G.
Shuai
,
D. Q.
Zhang
, and
D. B.
Zhu
,
J. Am. Chem. Soc.
128
,
15940
(
2006
).
[PubMed]
15.
(a)
X. D.
Yang
,
Q. K.
Li
, and
Z.
Shuai
,
Nanotechnology
18
,
424029
(
2007
);
[PubMed]
(b)
S. W.
Yin
,
Y. P.
Yi
,
Q. X.
Li
,
G.
Yu
,
Y. Q.
Liu
, and
Z. G.
Shuai
,
J. Phys. Chem. A
110
,
7138
(
2006
).
[PubMed]
16.
O.
Ostroverkhova
,
D. G.
Cooke
,
F. A.
Hegmann
,
J. E.
Anthony
,
V.
Podzorov
,
M. E.
Gershenson
,
O. D.
Jurchescu
, and
T. T. M.
Palstra
,
Appl. Phys. Lett.
88
,
162101
(
2006
);
V.
Podzorov
,
E.
Menard
,
A.
Borissov
,
V.
Kiryukhin
,
J. A.
Rogers
, and
M. E.
Gershenson
,
Phys. Rev. Lett.
93
,
086602
(
2004
);
[PubMed]
V.
Podzorov
,
E.
Menard
,
J. A.
Rogers
, and
M. E.
Gershenson
,
Phys. Rev. Lett.
95
,
226601
(
2005
).
[PubMed]
17.
P. J.
Brown
,
H.
Sirringhaus
,
M.
Harrison
,
M.
Shkunov
, and
R. H.
Friend
,
Phys. Rev. B
63
,
125204
(
2001
).
18.
A.
Troisi
and
G.
Orlandi
,
Chem. Phys. Lett.
344
,
509
(
2001
).
19.
A.
Troisi
and
G.
Orlandi
,
J. Phys. Chem. A
110
,
4065
(
2006
);
[PubMed]
A.
Troisi
and
G.
Orlandi
,
Phys. Rev. Lett.
96
,
086601
(
2006
);
[PubMed]
A.
Troisi
,
Adv. Mater. (Weinheim, Ger.)
19
,
2000
(
2007
).
20.
S. H.
Lin
,
C. H.
Chang
,
K. K.
Liang
,
R.
Chang
,
J. M.
Zhang
,
T. S.
Yang
,
M.
Hayashi
,
Y. J.
Shiu
, and
F. C.
Hsu
,
Adv. Chem. Phys.
121
,
1
(
2002
).
21.
G. J.
Nan
,
X. D.
Yang
,
L. J.
Wang
,
Z.
Shuai
, and
Y.
Zhao
(unpublished).
22.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
23.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
24.
G. E.
Zahr
,
R. K.
Preston
, and
W. H.
Miller
,
J. Chem. Phys.
62
,
1127
(
1975
);
E. J.
Heller
and
R. C.
Brown
,
J. Chem. Phys.
79
,
3336
(
1983
);
A. J.
Marks
and
D. L.
Thompson
,
J. Chem. Phys.
96
,
1911
(
1992
);
A. J.
Marks
,
J. Chem. Phys.
114
,
1700
(
2001
);
M. S.
Topaler
and
D. G.
Truhlar
,
J. Chem. Phys.
107
,
392
(
1997
).
25.
F.
Remacle
,
D.
Dehareng
, and
J. C.
Lorquet
,
J. Phys. Chem.
92
,
4784
(
1988
);
Q.
Cui
,
K.
Morokuma
, and
J. M.
Bowman
,
J. Chem. Phys.
110
,
9469
(
1999
).
26.
J. C.
Lorquet
and
B.
Leyh-Nihant
,
J. Phys. Chem.
92
,
4778
(
1988
).
27.
L.
Landau
,
Phys. Z. Sowjetunion
2
,
46
(
1932
);
C.
Zener
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
28.
C.
Zhu
and
H.
Nakamura
,
J. Chem. Phys.
101
,
10630
(
1994
);
C.
Zhu
and
H.
Nakamura
,
J. Chem. Phys.
108
,
7501
(
1998
);
C.
Zhu
,
Y.
Teranishi
, and
H.
Nakamura
,
Adv. Chem. Phys.
117
,
127
(
2001
).
29.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
30.
Y.
Zhao
,
G.
Mil’nikov
, and
H.
Nakamura
,
J. Chem. Phys.
121
,
8854
(
2004
).
31.
Y.
Zhao
,
W. Z.
Liang
, and
H.
Nakamura
,
J. Phys. Chem. A
110
,
8204
(
2006
).
32.
Y.
Zhao
,
X.
Li
,
Z. L.
Zheng
, and
W. Z.
Liang
,
J. Chem. Phys.
124
,
114508
(
2006
).
33.
L.
Antolini
,
H.
Gilles
,
K.
Faycal
, and
G.
Francis
,
Adv. Mater. (Weinheim, Ger.)
10
,
382
(
1998
).
34.
T.
Siegrist
,
R. M.
Fleming
,
R. C.
Haddon
,
R. A.
Laudise
,
A. J.
Lovinger
,
H. E.
Katz
,
P.
Bridenbaugh
, and
D. D.
Davis
,
J. Mater. Res.
10
,
2170
(
1995
).
35.
T.
Siegrist
,
C.
Kloc
,
R. A.
Laudise
,
H. E.
Katz
, and
R. C.
Haddon
,
Adv. Mater. (Weinheim, Ger.)
10
,
379
(
1998
);
R. C.
Haddon
,
T.
Siegrist
,
R. M.
Fleming
,
P. M.
Bridenbaugh
, and
R. A.
Laudise
,
J. Mater. Chem.
5
,
1719
(
1995
).
36.
T.
Yamamoto
and
W. H.
Miller
,
J. Chem. Phys.
120
,
3086
(
2004
);
[PubMed]
Y.
Zhao
,
T.
Yamamoto
, and
W. H.
Miller
,
J. Chem. Phys.
120
,
3100
(
2004
).
[PubMed]
37.
E. V.
Tsiper
and
Z. G.
Soos
,
Phys. Rev. B
68
,
085301
(
2003
);
E. V.
Tsiper
,
Z. G.
Soos
,
W.
Gao
, and
A.
Kahn
,
Chem. Phys. Lett.
360
,
47
(
2002
).
38.
M.
Malagoli
and
J. L.
Brédas
,
Chem. Phys. Lett.
327
,
13
(
2000
).
39.
J. R.
Reimers
,
J. Chem. Phys.
115
,
9103
(
2001
).
40.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision A. 1, Gaussian, Inc., Pittsburgh PA,
2003
.
41.
J.
Cornil
,
D.
Beljonne
,
J. P.
Calbert
, and
J. L.
Brédas
,
Adv. Mater. (Weinheim, Ger.)
13
,
1053
(
2001
).
42.
E. F.
Valeev
,
V.
Coropceanu
,
D. A.
da Silva Filho
,
S.
Salman
, and
J. L.
Brédas
,
J. Am. Chem. Soc.
128
,
9882
(
2006
).
43.
X. Y.
Li
,
J. Comput. Chem.
22
,
565
(
2001
).
44.
J. M.
André
,
J.
Delhalle
, and
J. L.
Brédas
,
Quantum Chemistry Aided Design of Organic Polymers: An Introduction to the Quantum Chemistry of Polymers and its Applications
(
World Scientific
,
Singapore
,
1991
).
45.
C. J.
Calzado
and
J. P.
Malrieu
,
Chem. Phys. Lett.
317
,
404
(
2000
).
46.
J. S.
Huang
and
M.
Kertesz
,
Chem. Phys. Lett.
390
,
110
(
2004
).
47.
M.
Bixon
and
J.
Jortner
,
J. Phys. Chem.
95
,
1941
(
1991
).
48.
X. D.
Yang
,
L. J.
Wang
,
C. L.
Wang
,
W.
Long
, and
Z. G.
Shuai
,
Chem. Mater.
20
,
3205
(
2008
).
49.
R.
Hajlaoui
,
G.
Horowitz
,
F.
Garnier
,
A. A.
Brouchet
,
L.
Laigre
,
A. E.
Kassmi
,
F.
Demanze
, and
F.
Kouki
,
Adv. Mater. (Weinheim, Ger.)
9
,
389
(
1997
);
G.
Horowitz
and
M. E.
Hajlaoui
,
Adv. Mater. (Weinheim, Ger.)
12
,
1046
(
2000
);
G.
Horowitz
,
M. E.
Hajlaoui
, and
R.
Hajlaoui
,
J. Appl. Phys.
87
,
4456
(
2000
);
M.
Halik
,
H.
Klauk
,
U.
Zschieschang
,
G.
Schmid
,
S.
Ponomarenko
,
S.
Kirchmeyer
, and
W.
Weber
,
Adv. Mater. (Weinmheim, Ger.)
15
,
917
(
2003
);
S.
Nagamatsu
,
K.
Kaneto
,
R.
Azumi
,
M.
Matsumoto
,
Y.
Yoshida
, and
K.
Yase
,
J. Phys. Chem. B
109
,
9374
(
2005
).
[PubMed]
You do not currently have access to this content.