Centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD) are two conceptually distinct extensions of path integral molecular dynamics that are able to generate approximate quantum dynamics of complex molecular systems. Both methods can be used to compute quasiclassical time correlation functions which have direct application in molecular spectroscopy; in particular, to infrared spectroscopy via dipole autocorrelation functions. The performance of both methods for computing vibrational spectra of several simple but representative molecular model systems is investigated systematically as a function of temperature and isotopic substitution. In this context both CMD and RPMD feature intrinsic problems which are quantified and investigated in detail. Based on the obtained results guidelines for using CMD and RPMD to compute infrared spectra of molecular systems are provided.

1.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
2.
D.
Marx
and
J.
Hutter
, in
Modern Methods and Algorithms of Quantum Chemistry
,
NIC Series
Vol.
3
, 2nd ed., edited by
J.
Grotendorst
(
John von Neumann Institute for Computing
,
Jülich
,
2000
), pp.
329
477
.
3.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
4.
R. P.
Feynman
,
Statistical Mechanics
(
Addison-Wesley
,
Redwood City
,
1972
).
5.
W. H.
Miller
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6660
(
2005
).
6.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6709
(
2005
).
7.
T. D.
Hone
,
J. A.
Poulsen
,
P. J.
Rossky
, and
D. E.
Manolopoulos
,
J. Phys. Chem. B
112
,
294
(
2008
).
8.
A.
Nakayama
and
N.
Makri
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
4230
(
2005
).
9.
D. R.
Reichman
and
E.
Rabani
,
Phys. Rev. Lett.
87
,
265702
(
2001
).
10.
L. D.
Fosdick
,
J. Math. Phys.
3
,
1251
(
1962
).
11.
L. D.
Fosdick
and
H. F.
Jordan
,
Phys. Rev.
143
,
58
(
1966
).
12.
H. F.
Jordan
and
L. D.
Fosdick
,
Phys. Rev.
171
,
128
(
1968
).
13.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
14.
M.
Kac
,
Trans. Am Math. Soc.
65
,
1
(
1949
).
15.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
(
World Scientific
,
Singapore
,
2004
).
16.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
17.
M. E.
Tuckerman
and
A.
Hughes
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
).
18.
M. E.
Tuckerman
, in
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms
,
NIC Series
Vol.
10
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing
,
Jülich
,
2002
), pp.
269
298
.
19.
M. E.
Tuckerman
,
B. J.
Berne
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
99
,
2796
(
1993
).
20.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
).
21.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
(
1994
).
22.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
23.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6157
(
1994
).
24.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
25.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
26.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
).
27.
R.
Ramírez
and
T.
López-Ciudad
, in
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms
,
NIC Series
Vol.
10
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing
,
Jülich
,
2002
), pp.
325
375
.
28.
J. D.
Doll
,
J. Chem. Phys.
81
,
3536
(
1984
).
29.
S. M.
Valone
,
A. F.
Voter
, and
J. D.
Doll
,
Surf. Sci.
155
,
687
(
1985
).
30.
M. J.
Gillan
,
Phys. Rev. Lett.
58
,
563
(
1987
).
31.
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1987
).
32.
M. J.
Gillan
,
Philos. Mag. A
58
,
257
(
1988
).
33.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
34.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
184503
(
2005
).
35.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
154504
(
2005
).
36.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
084106
(
2005
).
37.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
034102
(
2005
).
38.
D. J. E.
Callaway
and
A.
Rahman
,
Phys. Rev. Lett.
49
,
613
(
1982
).
39.
J.
Polonyi
and
H. W.
Wyld
,
Phys. Rev. Lett.
51
,
2257
(
1983
).
40.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
41.
B.
De Raedt
,
M.
Sprik
, and
M. L.
Klein
,
J. Chem. Phys.
80
,
5719
(
1984
).
42.
R. W.
Hall
and
B. J.
Berne
,
J. Chem. Phys.
81
,
3641
(
1984
).
43.
D.
Marx
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
Comput. Phys. Commun.
118
,
166
(
1999
).
44.
D.
Marx
and
M.
Parrinello
,
Z. Phys. B: Condens. Matter
95
,
143
(R) (
1994
).
45.
D.
Marx
and
M.
Parrinello
,
J. Chem. Phys.
104
,
4077
(
1996
).
46.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
J. Chem. Phys.
104
,
5579
(
1996
).
47.
D.
Marx
, in
Computer Simulations in Condensed Matter: From Materials to Chemical Biology
,
Lecture Notes in Physics
Vol.
704
, edited by
M.
Ferrario
,
K.
Binder
, and
G.
Ciccotti
(
Springer
,
Berlin
,
2006
), pp.
507
539
.
48.
M.
Pavese
,
D. R.
Berard
, and
G. A.
Voth
,
Chem. Phys. Lett.
300
,
93
(
1999
).
49.
Y.
Ohta
,
K.
Ohta
, and
K.
Kinugawa
,
J. Chem. Phys.
120
,
312
(
2004
).
50.
M.
Shiga
and
A.
Nakayama
,
Chem. Phys. Lett.
451
,
175
(
2008
).
51.
X.
Huang
,
S.
Habershon
, and
J. M.
Bowman
,
Chem. Phys. Lett.
450
,
253
(
2008
).
52.
A.
Kaczmarek
,
M.
Shiga
, and
D.
Marx
,
J. Phys. Chem. A
113
,
1985
(
2009
).
53.
M.
Benoit
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
392
,
258
(
1998
).
54.
S.
Biermann
,
D.
Hohl
, and
D.
Marx
,
Solid State Commun.
108
,
337
(
1998
).
55.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
56.
M.
Benoit
and
D.
Marx
,
ChemPhysChem
6
,
1738
(
2005
).
57.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
58.
B. J.
Braams
and
D. E.
Manolopoulos
,
J. Chem. Phys.
125
,
124105
(
2006
).
59.
T. D.
Hone
,
P. J.
Rossky
, and
G. A.
Voth
,
J. Chem. Phys.
124
,
154103
(
2006
).
60.
A.
Perez
,
M. E.
Tuckerman
, and
M. H.
Müser
,
J. Chem. Phys.
(submitted).
61.
A.
Yoshimori
,
J. Chem. Phys.
128
,
234105
(
2008
).
62.
S.
Habershon
,
G. S.
Fanourgakis
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
074501
(
2008
).
63.
M. J.
Gillan
, in
Computer Modelling of Fluids, Polymers, and Solids
, edited by
C. R. A.
Catlow
,
S. C.
Parker
, and
M. P.
Allen
(
Kluwer
,
Dordrecht
,
1990
).
64.
C.
Chakravarty
,
Int. Rev. Phys. Chem.
16
,
421
(
1997
).
65.
D.
Marx
and
M. H.
Müser
,
J. Phys.: Condens. Matter
11
,
R117
(
1999
).
66.
R. D.
Coalson
,
J. Chem. Phys.
85
,
926
(
1986
).
67.
G. J.
Martyna
,
M. L.
Klein
, and
M. E.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
68.
G. J.
Martyna
,
J. Chem. Phys.
104
,
2018
(
1996
).
69.
J.
Cao
and
G. J.
Martyna
,
J. Chem. Phys.
104
,
2028
(
1996
).
70.
M. E.
Tuckerman
,
A.
Hughes
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
71.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Kumar P
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
72.
R.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
(
1965
).
73.
R.
Ramírez
and
T.
López-Ciudad
,
Phys. Rev. Lett.
83
,
4456
(
1999
).
74.
S.
Habershon
,
B. J.
Braams
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
127
,
174108
(
2007
).
75.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
76.
G.
Krilov
and
B. J.
Berne
,
J. Chem. Phys.
111
,
9140
(
1999
).
77.
O.
Asvany
,
P.
Kumar P
,
B.
Redlich
,
I.
Hegemann
,
S.
Schlemmer
, and
D.
Marx
,
Science
309
,
1219
(
2005
).
78.
P.
Kumar P.
and
D.
Marx
,
Phys. Chem. Chem. Phys.
8
,
573
(
2006
).
You do not currently have access to this content.