Using nonequilibrium switching simulations to determine the free-energy difference between two thermodynamic states has gained tremendous popularity since Jarzynski’s identity was proposed. The efficiency of a nonequilibrium switching simulation depends on the switching function. A well selected switching function can significantly minimize the associated dissipative work and reduce the computational cost of nonequilibrium free-energy simulations. In this paper, a method for estimating an efficient switching function during a nonequilibrium free-energy simulation is presented. The switching rate depends on the fluctuation of the fictitious force and a relaxation time. This method is similar to a prior method described by de Koning [J. Chem. Phys.122, 104106 (2005)], except in our approach the switching rate is determined on-the-fly without the need for trial pulls. Our method can be easily incorporated into any existing implementation of the nonequilibrium switching method. The on-the-fly approach was used to determine the transformation free energy between two types of Einstein crystals and the isothermal free energy of expansion of a van der Waals gas. For both of the test cases, our on-the-fly method is found to provide a switching function much more superior than the standard one.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic
,
New York
,
2002
).
2.
D. A.
Kofke
,
Fluid Phase Equilib.
228–229
,
41
(
2005
).
3.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
4.
J. B.
Abrams
and
M. E.
Tuckerman
,
J. Phys. Chem. B
112
,
15742
(
2008
).
5.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
6.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
7.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1011
(
1992
).
8.
M.
Watanabe
and
W. P.
Reinhardt
,
Phys. Rev. Lett.
65
,
3301
(
1990
).
9.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
10.
C.
Jarzynski
,
Phys. Rev. E
56
,
5018
(
1997
).
11.
S.
Park
,
F.
Khalili-Araghi
,
E.
Tajkhorshid
, and
K.
Schulten
,
J. Chem. Phys.
119
,
3559
(
2003
).
12.
P.
Maragakis
,
M.
Spichty
, and
M.
Karplus
,
Phys. Rev. Lett.
96
,
100602
(
2006
).
13.
L.
Rosso
,
P.
Minary
,
Z.
Zhu
, and
M. E.
Tuckerman
,
J. Chem. Phys.
116
,
4389
(
2002
).
14.
W.
Lechner
and
C.
Dellago
,
J. Stat. Mech.: Theory Exp.
2007
,
P04001
(
2007
).
15.
N.
Lu
,
D.
Wu
,
T. B.
Woolf
, and
D. A.
Kofke
,
Phys. Rev. E
69
,
057702
(
2004
).
16.
F. M.
Ytreberg
and
D. M.
Zuckerman
,
J. Comput. Chem.
25
,
1749
(
2004
).
17.
S.
Vaikuntanathan
and
C.
Jarzynski
,
Phys. Rev. Lett.
100
,
190601
(
2008
).
18.
M.
de Koning
,
J. Chem. Phys.
122
,
104106
(
2005
).
19.
J.
Gore
,
F.
Ritort
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
12564
(
2003
).
20.
R. F.
Fox
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
12537
(
2003
).
21.
A.
Leach
,
Molecular Modelling: Principles and Applications
, 2nd ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
2001
).
22.
T.
Schmiedl
and
U.
Seifert
,
Phys. Rev. Lett.
98
,
108301
(
2007
).
23.
H.
Then
and
A.
Engel
,
Phys. Rev. E
77
,
041105
(
2008
).
24.
L. -W.
Tsao
,
S. -Y.
Sheu
, and
C. -Y.
Mou
,
J. Chem. Phys.
101
,
2302
(
1994
).
25.
M.
de Koning
and
A.
Antonelli
,
Phys, Rev. B
55
,
735
(
1997
).
26.
G.
Lindberg
and
F.
Wang
(unpublished).
27.
W.
Smith
,
T. R.
Forester
, and
I. T.
Todorov
, The DL_POLY_2 User Manual, Daresbury Laboratory, Daresbury, Warrington, England,
2009
.
28.
D.
Frenkel
and
A. J. C.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
29.
G. J.
Martynau
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
30.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
31.
R. A.
Alberty
and
R. J.
Silbey
,
Physical Chemistry
(
Wiley
,
New York
,
1992
).
You do not currently have access to this content.