This paper presents an approach for obtaining accurate interaction energies at the density functional theory level for systems where dispersion interactions are important. This approach combines Becke and Johnson’s [J. Chem. Phys.127, 154108 (2007)] method for the evaluation of dispersion energy corrections and a Hirshfeld method for partitioning of molecular polarizability tensors into atomic contributions. Due to the availability of atomic polarizability tensors, the method is extended to incorporate anisotropic contributions, which prove to be important for complexes of lower symmetry. The method is validated for a set of 18 complexes, for which interaction energies were obtained with the B3LYP, PBE, and TPSS functionals combined with the aug-cc-pVTZ basis set and compared with the values obtained at the CCSD(T) level extrapolated to a complete basis set limit. It is shown that very good quality interaction energies can be obtained by the proposed method for each of the examined functionals, the overall performance of the TPSS functional being the best, which with a slope of 1.00 in the linear regression equation and a constant term of only 0.1 kcal/mol allows to obtain accurate interaction energies without any need of a damping function for complexes close to their exact equilibrium geometry.

1.
W.
Koch
and
M. C.
Holthause
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
Weinheim
,
2000
).
2.
P.
Hobza
,
Phys. Chem. Chem. Phys.
10
,
2581
(
2008
).
3.
P.
Hobza
and
J.
Šponer
,
Chem. Rev. (Washington, D.C.)
99
,
3247
(
1999
).
4.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
5.
W.
Versées
,
S.
Loverix
,
A.
Vandemeulebroucke
,
P.
Geerlings
, and
J.
Steyaert
,
J. Mol. Biol.
338
,
1
(
2004
).
6.
P.
Mignon
,
S.
Loverix
,
F.
De Proft
, and
P.
Geerlings
,
J. Phys. Chem. A
108
,
6038
(
2004
).
7.
P.
Mignon
,
S.
Loverix
, and
P.
Geerlings
,
Chem. Phys. Lett.
401
,
40
(
2005
).
8.
P.
Mignon
,
S.
Loverix
,
J.
Steyaert
, and
P.
Geerlings
,
Nucleic Acids Res.
33
,
1779
(
2005
).
9.
X.
Xu
and
W. A.
Goddard
 III
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
267
(
2004
).
10.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
11.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
289
(
2007
).
12.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
13.
O. A.
von Lilienfeld
,
I.
Tavernelli
,
U.
Rothlisberger
, and
D.
Sebastiani
,
Phys. Rev. Lett.
93
,
153004
(
2004
).
14.
O. A.
von Lilienfeld
,
I.
Tavernelli
,
U.
Rothlisberger
, and
D.
Sebastiani
,
Phys. Rev. B
71
,
195119
(
2005
).
15.
I. C.
Lin
and
U.
Rothlisberger
,
Chimia
62
,
231
(
2008
).
16.
I. C.
Lin
and
U.
Rothlisberger
,
Phys. Chem. Chem. Phys.
10
,
2730
(
2008
).
17.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
18.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
19.
T.
Sato
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
126
,
234114
(
2007
).
20.
M.
Kamiya
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
117
,
6010
(
2002
).
21.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
22.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
23.
J.
Anthony
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
8
,
5287
(
2006
).
24.
S.
Grimme
,
J.
Anthony
,
T.
Schwabe
, and
C.
Mück-Lichtenfeld
,
Org. Biomol. Chem.
5
,
741
(
2007
).
25.
S.
Grimme
,
Angew. Chem., Int. Ed.
47
,
3430
(
2008
).
26.
P.
Jurečka
,
J.
Černý
,
P.
Hobza
, and
D. R.
Salahub
,
J. Comput. Chem.
28
,
555
(
2007
).
27.
J.
Černý
and
P.
Hobza
,
Phys. Chem. Chem. Phys.
9
,
5291
(
2007
).
28.
J. D.
Chai
and
M.
Head-Gorden
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
29.
S. J. A.
Van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
103
,
9347
(
1995
).
30.
V. P.
Osinga
,
S. J. A.
Van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
106
,
5091
(
1997
).
31.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
122
,
154104
(
2005
).
32.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
123
,
024101
(
2005
).
33.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
).
34.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
124
,
174104
(
2006
).
35.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
124
,
014104
(
2006
).
36.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
154108
(
2007
).
37.
A.
Olasz
,
K.
Vanommeslaeghe
,
A.
Krishtal
,
T.
Veszprémi
,
C.
Van Alsenoy
, and
P.
Geerlings
,
J. Chem. Phys.
127
,
224105
(
2007
).
38.
F. L.
Hirshfeld
,
Theoret. Chim. Acta
44
,
129
(
1977
).
39.
B.
Rousseau
,
A.
Peeters
, and
C.
Van Alsenoy
,
Chem. Phys. Lett.
324
,
189
(
2000
).
40.
A.
Krishtal
,
P.
Senet
,
Y.
Mingli
, and
C.
Van Alsenoy
,
J. Chem. Phys.
125
,
034312
(
2006
).
41.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
43.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
44.
J. M.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
45.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbo-Dorca
,
J. Chem. Phys.
126
,
144111
(
2007
).
46.
A.
Krishtal
,
P.
Senet
, and
C.
Van Alsenoy
,
J. Chem. Theory Comput.
4
,
2122
(
2008
).
47.
F.
De Proft
,
C.
Van Alsenoy
,
A.
Peeters
,
W.
Langenaeker
, and
P.
Geerlings
,
J. Comput. Chem.
23
,
1198
(
2002
).
48.
A. D.
Buckingham
,
Adv. Chem. Phys.
12
,
107
(
1967
).
49.
A. D.
Buckingham
,
Intermolecular Interactions: From Diatomics to Biopolymers
(
Wiley
,
New York
,
1978
), p.
1
.
50.
F.
London
,
Trans. Faraday Soc.
33
,
8
(
1937
).
51.
A.
Unsöld
,
Z. Phys.
43
,
563
(
1927
).
52.
B.
Pullman
,
P.
Claverie
, and
J.
Caillet
,
Proc. Natl. Acad. Sci. U.S.A.
55
,
904
(
1966
).
53.
W.
Rijks
and
P. E. S.
Wormer
,
J. Chem. Phys.
90
,
6507
(
1989
).
54.
T. J.
Giese
and
D. M.
York
,
Int. J. Quantum Chem.
98
,
388
(
2004
).
55.
K.
Patel
,
P. R.
Butler
,
A. M.
Ellis
, and
M. D.
Wheeler
,
J. Chem. Phys.
119
,
909
(
2003
).
56.
R.
Prosmiti
,
C.
Cunha
,
P.
Villareal
, and
G.
Delgado-Barrio
,
J. Chem. Phys.
119
,
4216
(
2003
).
57.
E. R.
Johnson
and
G. A.
DiLabio
,
Chem. Phys. Lett.
397
,
314
(
2004
).
58.
S.
Tsuzuki
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Chem. Phys.
109
,
2169
(
1998
).
59.
R. G. A.
Bone
,
Chem. Phys. Lett.
206
,
260
(
1993
).
60.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
61.
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
,
J. Chem. Phys.
105
,
11024
(
1996
).
62.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
63.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
64.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
W.
Klopper
,
J. Chem. Phys.
112
,
9229
(
2000
).
65.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Revision C.02, Gaussian, Inc., Wallingford, CT,
2004
.
You do not currently have access to this content.