We investigate the coalescence of two DNA bubbles initially located at weak domains and separated by a more stable barrier region in a designed construct of double-stranded DNA. In a continuum Fokker–Planck approach, the characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behavior, while at high temperatures, the bubble corners perform drift diffusion toward coalescence. In the calculations, we map the bubble dynamics on the problem of two vicious walkers in opposite potentials. We also present a discrete master equation approach to the bubble coalescence problem. Numerical evaluation and stochastic simulation of the master equation show excellent agreement with the results from the continuum approach. Given that the coalesced state is thermodynamically stabilized against a state where only one or a few of the base pairs of the barrier region are re-established, it appears likely that this type of setup could be useful for the quantitative investigation of thermodynamic DNA stability data as well as the rate constants involved in the unzipping and zipping dynamics of DNA in single molecule fluorescence experiments.

1.
J. D.
Watson
and
F. H. C.
Crick
,
Nature (London)
171
,
737
(
1953
).
2.
C. R.
Cantor
and
P. R.
Schimmel
,
Biophysical Chemistry
(
Freeman
,
New York
,
1980
).
3.
A.
Kornberg
,
DNA Synthesis
(
Freeman
,
San Francisco
,
1974
).
4.
A.
Kornberg
and
T. A.
Baker
,
DNA Replication
(
Freeman
,
New York
,
1992
).
5.
M. D.
Frank-Kamenetskii
,
Phys. Rep.
288
,
13
(
1997
).
6.
S. G.
Delcourt
and
R. D.
Blake
,
J. Biol. Chem.
266
,
15160
(
1991
).
7.
R. D.
Blake
,
J. W.
Bizzaro
,
J. D.
Blake
,
G. R.
Day
,
S. G.
Delcourt
,
J.
Knowles
,
K. A.
Marx
, and
J.
SantaLucia
, Jr.
,
Bioinformatics
15
,
370
(
1999
).
8.
A.
Krueger
,
E.
Protozanova
, and
M. D.
Frank-Kamenetskii
,
Biophys. J.
90
,
3091
(
2006
).
9.
D.
Poland
and
H. A.
Scheraga
,
Theory of Helix-Coil Transitions in Biopolymers
(
Academic
,
New York
,
1970
).
10.
11.
R. M.
Wartell
and
A. S.
Benight
,
Phys. Rep.
126
,
67
(
1985
).
12.
C.
Richard
and
A. J.
Guttmann
,
J. Stat. Phys.
115
,
925
(
2004
).
14.
E.
Carlon
,
M. L.
Malki
, and
R.
Blossey
,
Phys. Rev. Lett.
94
,
178101
(
2005
).
15.
M.
Guéron
,
M.
Kochoyan
, and
J. -L.
Leroy
,
Nature (London)
328
,
89
(
1987
).
16.
G.
Altan-Bonnet
,
A.
Libchaber
, and
O.
Krichevsky
,
Phys. Rev. Lett.
90
,
138101
(
2003
).
17.
R.
Metzler
,
T.
Ambjörnsson
,
A.
Hanke
,
Y.
Zhang
, and
S.
Levene
,
J. Comput. Theor. Nanosci.
4
,
1
(
2007
).
18.
K.
Pant
,
R. L.
Karpel
, and
M. C.
Williams
,
J. Mol. Biol.
327
,
571
(
2003
).
19.
K.
Pant
,
R. L.
Karpel
,
I.
Rouzina
, and
M. C.
Williams
,
J. Mol. Biol.
336
,
851
(
2004
);
[PubMed]
K.
Pant
,
R. L.
Karpel
,
I.
Rouzina
, and
M. C.
Williams
,
J. Mol. Biol.
349
,
317
(
2005
).
[PubMed]
20.
I. M.
Sokolov
,
R.
Metzler
,
K.
Pant
, and
M. C.
Williams
,
Biophys. J.
89
,
895
(
2005
).
21.
T.
Ambjörnsson
and
R.
Metzler
,
Phys. Rev. E
72
,
030901
(R) (
2005
).
22.
C. H.
Choi
,
G.
Kalosakas
,
K. Ø.
Rasmussen
,
M.
Hiromura
,
A. R.
Bishop
, and
A.
Usheva
,
Nucleic Acids Res.
32
,
1584
(
2004
).
23.
S.
Ares
and
G.
Kalosakas
,
Nano Lett.
7
,
307
(
2007
).
24.
T.
Ambjörnsson
,
S. K.
Banik
,
O.
Krichevsky
, and
R.
Metzler
,
Phys. Rev. Lett.
97
,
128105
(
2006
).
25.
T.
Ambjörnsson
,
S. K.
Banik
,
O.
Krichevsky
, and
R.
Metzler
,
Biophys. J.
92
,
2674
(
2007
).
26.
M.
Peyrard
and
A. R.
Bishop
,
Phys. Rev. Lett.
62
,
2755
(
1989
).
27.
T.
Dauxois
,
M.
Peyrard
, and
A. R.
Bishop
,
Phys. Rev. E
47
,
R44
(
1993
).
28.
B. S.
Alexandrov
,
L. T.
Wille
,
K. Ø.
Rasmussen
,
A. R.
Bishop
, and
K. B.
Blagoev
,
Phys. Rev. E
74
,
050901
(
2006
).
29.
A.
Campa
and
A.
Giansanti
,
Phys. Rev. E
58
,
3585
(
1998
).
31.
A.
Hanke
and
R.
Metzler
,
J. Phys. A
36
,
L473
(
2003
).
32.
A.
Bar
,
Y.
Kafri
, and
D.
Mukamel
,
Phys. Rev. Lett.
98
,
038103
(
2007
).
33.
H. C.
Fogedby
and
R.
Metzler
,
Phys. Rev. Lett.
98
,
070601
(
2007
);
[PubMed]
H. C.
Fogedby
and
R.
Metzler
,
Phys. Rev. E
76
,
061915
(
2007
).
34.
D. J.
Bicout
and
E.
Kats
,
Phys. Rev. E
70
,
010902
(R) (
2004
).
35.
T.
Ambjörnsson
and
R.
Metzler
,
J. Phys.: Condens. Matter
17
,
S1841
(
2005
).
36.
S. K.
Banik
,
T.
Ambjörnsson
, and
R.
Metzler
,
Europhys. Lett.
71
,
852
(
2005
).
37.
T.
Hwa
,
E.
Marinari
,
K.
Sneppen
, and
L. -H.
Tang
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
4411
(
2003
).
38.
J. -H.
Jeon
,
P. J.
Park
, and
W.
Sung
,
J. Chem. Phys.
125
,
164901
(
2006
).
39.
T.
Ambjörnsson
,
S. K.
Banik
,
M. A.
Lomholt
, and
R.
Metzler
,
Phys. Rev. E
75
,
021908
(
2007
).
40.
R.
Metzler
and
T.
Ambjörnsson
,
J. Comput. Theor. Nanosci.
2
,
389
(
2005
).
41.
T.
Ambjörnsson
and
R.
Metzler
,
J. Phys.: Condens. Matter
17
,
S4305
(
2005
).
42.
D.
Poland
and
H. A.
Scheraga
,
J. Chem. Phys.
45
,
1464
(
1966
).
43.
M. E.
Fisher
,
J. Chem. Phys.
45
,
1469
(
1966
).
44.
Y.
Kafri
,
D.
Mukamel
, and
L.
Peliti
,
Phys. Rev. Lett.
85
,
4988
(
2000
).
45.
A.
Hanke
and
R.
Metzler
,
Phys. Rev. Lett.
90
,
159801
(
2003
);
[PubMed]
Y.
Kafri
,
D.
Mukamel
, and
L.
Peliti
,
Phys. Rev. Lett.
90
,
159802
(
2003
).
[PubMed]
46.
A.
Hanke
,
M. G.
Ochoa
, and
R.
Metzler
,
Phys. Rev. Lett.
100
,
018106
(
2008
).
47.
R.
Blossey
and
E.
Carlon
,
Phys. Rev. E
68
,
061911
(
2003
).
48.
G.
Bonnet
,
O.
Krichevsky
, and
A.
Libchaber
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
8602
(
1998
);
[PubMed]
G.
Bonnet
,
S.
Tyagi
,
A.
Libchaber
, and
F. R.
Kramer
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
6171
(
1999
).
[PubMed]
49.
O.
Krichevsky
and
G.
Bonnet
,
Rep. Prog. Phys.
65
,
251
(
2002
).
50.
M. E.
Fisher
,
J. Stat. Phys.
34
,
667
(
1984
).
51.
A. J.
Bray
and
K.
Winkler
,
J. Phys. A
37
,
5493
(
2004
).
52.
M.
Fixman
and
J. J.
Freire
,
Biopolymers
16
,
2693
(
1977
).
53.
Also, tL+(X=NL1,Y)=0 and tR(X,Y=N+NR+1)=0 for completeness.
54.
E. A.
Di Marzio
,
C. M.
Guttman
, and
J. D.
Hoffman
,
Faraday Discuss.
68
,
210
(
1979
).
55.
T.
Novotný
,
J. N.
Pedersen
,
M. S.
Hansen
,
T.
Ambjörnsson
, and
R.
Metzler
,
Europhys. Lett.
77
,
48001
(
2007
).
56.
H.
Risken
,
The Fokker-Planck Equation
(
Springer
,
Berlin
,
1989
).
57.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
, 2nd ed. (
North-Holland
,
Amsterdam
,
1992
).
58.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
(
Springer
,
Berlin
,
1989
).
59.
R. F.
Pawula
,
Phys. Rev.
162
,
186
(
1967
).
60.
J.
Marcinkiewicz
,
Math. Z.
44
,
612
(
1939
).
61.
The name vicious stems from Ref. 50.
62.
S.
Redner
,
A Guide to First-Passage Processes
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
63.
T.
Novotný
and
P.
Chvosta
,
Phys. Rev. E
63
,
012102
(
2000
).
64.
T.
Novotný
and
R.
Metzler
(unpublished).
66.
T.
Ambjörnsson
and
R. J.
Silbey
,
J. Chem. Phys.
129
,
165103
(
2008
).
67.
M. D.
Frank-Kamenetskii
,
Biopolymers
10
,
2623
(
1971
).
68.
P.
Yakovchuk
,
E.
Protozanova
, and
M. D.
Frank-Kamenetskii
,
Nucleic Acids Res.
34
,
564
(
2006
).
69.
E.
Protozanova
,
P.
Yakovchuk
, and
M. D.
Frank-Kamenetskii
,
J. Mol. Biol.
342
,
775
(
2004
).
70.
C.
Schildkraut
and
S.
Lifson
,
Biopolymers
3
,
195
(
1965
).
71.
B.
van den Broek
,
M. A.
Lomholt
,
S. -M. J.
Kalisch
,
R.
Metzler
, and
G. J. L.
Wuite
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
15738
(
2008
).
72.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
You do not currently have access to this content.