The negative ion photoelectron spectrum of the isopropoxide anion is determined using the multimode vibronic coupling approach. The simulated spectrum is based on a two state quasidiabatic Hamiltonian for the isopropoxy radical, Hd, which includes all terms through second-order order in all internal coordinates and accurately represents the vicinity of the ab initio determined equilibrium geometry of the ground electronic state as well as the minimum energy crossing point (MECP) on the symmetry-allowed A2A2 accidental seam of conical intersection. Hd is centered at the A2A2 MECP and is determined from ab initio gradients and derivative couplings using a normal equations based algorithm. Spin-orbit effects are included using a generalization of a procedure due to Child and Longuet-Higgins. The nonadiabatic interactions coupling the A2 and A2 states are very similar to those found in an Exe Jahn–Teller system although the requisite symmetry is absent. The simulated photoelectron spectrum for isopropoxide-h7 is compared to a measured photoelectron spectrum and the results of a dispersed fluorescence experiment on the isopropoxy radical. The nominal ÃA2X̃A2 splitting of 68cm1 from the dispersed fluorescence experiment is confirmed. This splitting is shown to be a consequence of the accidental Jahn–Teller symmetry and the spin-orbit interaction so that the standard designation of this spectral feature as the ÃX̃ splitting is not appropriate. This spectral feature is better thought of as the spin-orbit splitting of a nearly degenerate ground state. It is further shown that the intensities and line positions are such that the origin band of the nominal ÃA2 state and that of the X̃A2 state could not be distinguished with the resolution available in the photoelectron experiment. The photoelectron spectrum of the completely deuterated analog, isopropoxide-d7, is also reported and discussed.

1.
C. C.
Carter
,
J. R.
Atwell
,
S.
Gopalakrishnan
, and
T. A.
Miller
,
J. Phys. Chem. A
104
,
9165
(
2000
).
2.
A. F.
Gao
,
Z.
Hao
, and
A. G.
Li
,
J. Mol. Struct.: THEOCHEM
848
,
40
(
2008
).
3.
J.
Jin
,
I.
Sioutis
,
G.
Tarczay
,
S.
Gopalakrishnan
,
A.
Bezanat
, and
T. A.
Miller
,
J. Chem. Phys.
121
,
11780
(
2004
).
4.
T. M.
Ramond
,
G. E.
Davico
,
R. L.
Schwartz
, and
W. C.
Lineberger
,
J. Chem. Phys.
112
,
1158
(
2000
).
5.
S.
Gopalakrishnan
,
L.
Zu
, and
T. A.
Miller
,
Chem. Phys. Lett.
380
,
749
(
2003
).
6.
G.
Tarczay
,
S.
Gopalakrishnan
, and
T. A.
Miller
,
J. Mol. Spectrosc.
220
,
276
(
2003
).
7.
R.
Atkinson
,
Int. J. Chem. Kinet.
29
,
99
(
1997
).
8.
M. E.
Jenkin
and
G. D.
Hayman
,
Atmos. Environ.
33
,
1275
(
1999
).
9.
R. A.
Young
, Jr.
and
D. R.
Yarkony
,
J. Chem. Phys.
125
,
234301
(
2006
).
10.
S. C.
Foster
,
P.
Misra
,
T. -Y. D.
Lin
,
C. P.
Damo
,
C. C.
Carter
, and
T. A.
Miller
,
J. Phys. Chem.
92
,
5914
(
1988
).
11.
X.
Zhu
,
M. M.
Kamal
, and
P.
Misra
,
Pure Appl. Opt.
5
,
1021
(
1996
).
12.
C. C.
Carter
,
S.
Gopalakrishnan
,
J. R.
Atwell
, and
T. A.
Miller
,
J. Phys. Chem. A
105
,
2925
(
2001
).
13.
S.
Gopalakrishnan
,
L.
Zu
, and
T.
Miller
,
J. Phys. Chem. A
107
,
5189
(
2003
).
14.
A. V.
Marenich
and
J. E.
Boggs
,
J. Chem. Phys.
122
,
024308
(
2005
).
15.
M. S.
Schuurman
,
R. A.
Young
, and
D. R.
Yarkony
,
Chem. Phys.
347
,
57
(
2008
).
16.
B. E.
Applegate
,
T. A.
Barckholtz
, and
T. A.
Miller
,
Chem. Soc. Rev.
32
,
38
(
2003
).
17.
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
J. Photochem. Photobiol. A
105
,
365
(
1997
).
18.
H.
Koizumi
and
I.
Bersuker
,
Phys. Rev. Lett.
83
,
3009
(
1999
).
19.
M.
Klessinger
and
J.
Michl
,
Excited States and the Photochemistry of Organic Molecules
(
VCH
,
New York
,
1995
).
20.
I.
Bersuker
,
The Jahn-Teller Effect
(
Cambridge University Press
,
Cambridge
,
2006
).
21.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
New Jersey
,
2004
), Vol.
15
, p.
323
.
22.
T. A.
Barckholtz
and
T. A.
Miller
,
Int. Rev. Phys. Chem.
17
,
435
(
1998
).
23.
J.
Schmidt-Klügmann
,
H.
Köppel
,
S.
Schmatz
, and
P.
Botschwina
,
Chem. Phys. Lett.
369
,
21
(
2003
).
24.
M. S.
Schuurman
,
D. E.
Weinberg
, and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
104309
(
2007
).
25.
B. N.
Papas
,
M. S.
Schuurman
, and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
124104
(
2008
).
26.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
128
,
044119
(
2008
).
27.
M. S.
Child
and
H. C.
Longuet-Higgins
,
Proc. Phys. Soc., London, Sect. A
245
,
259
(
1961
).
28.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
29.
S. R.
Langhoff
and
C. W.
Kern
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1977
), Vol.
4
, p.
381
.
30.
C. A.
Mead
,
J. Chem. Phys.
70
,
2276
(
1979
).
31.
F. S.
Ham
,
Phys. Rev.
138
,
A1727
(
1965
).
32.
F. S.
Ham
,
Phys. Rev.
166
,
307
(
1968
).
33.
J.
Cullum
and
R.
Willoughby
,
Lanczos Algorithms for Large Symmetric EIgenvalue Problems
(
Birkhauser
,
Boston
,
1985
).
34.
D. R.
Yarkony
,
J. Chem. Phys.
97
,
1838
(
1992
).
35.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man'ko
,
J. Mol. Spectrosc.
56
,
1
(
1975
).
36.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man'ko
,
J. Mol. Spectrosc.
64
,
302
(
1977
).
37.
A.
Hazra
and
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
643
(
2003
).
38.
H.
Kupka
and
P. H.
Cribb
,
J. Chem. Phys.
85
,
1303
(
1986
).
39.
D. J.
Tannor
and
E. J.
Heller
,
J. Chem. Phys.
77
,
202
(
1982
).
40.
D. R.
Yarkony
,
Int. Rev. Phys. Chem.
11
,
195
(
1992
).
41.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
42.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Alhrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Erhard
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
, and
J. -G.
Zhao
, COLUMBUS, an ab initio electronic structure program (
2003
).
43.
See EPAPS Document No. E-JCPSA6-130-039914 for supplementary data. For more information on EPAPS, see http://www.aip.org.pubservs/epaps.html.
44.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
45.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
46.
R.
Englman
,
The Jahn-Teller Effect in Molecules and Crystals
(
Wiley-Interscience
,
New York
,
1972
).
47.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
064304
(
2008
).
48.
R. S.
Berry
,
J. Chem. Phys.
32
,
933
(
1960
).
49.
S. D.
Brossard
,
P. G.
Carrick
,
E. L.
Chappell
,
S. C.
Hulegaard
, and
P. C.
Engelking
,
J. Chem. Phys.
84
,
2459
(
1986
).
50.
P.
Misra
,
X.
Zhu
,
C. -Y.
Hsueh
, and
J. B.
Halpern
,
Chem. Phys.
178
,
377
(
1993
).
51.
Y. -Y.
Lee
,
G. -H.
Wann
, and
Y. -P.
Lee
,
J. Chem. Phys.
99
,
9465
(
1993
).
52.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).

Supplementary Material

You do not currently have access to this content.