The accurate molecular simulation of many hydrated chemical systems, including clay minerals and other phyllosilicates and their interfaces with aqueous solutions, requires improved classical force field potentials to better describe structure and vibrational behavior. Classical and ab initio molecular dynamics simulations of the bulk structure of pyrophyllite, talc, and Na-montmorillonite clay phases exhibit dissimilar behavior in the hydroxyl stretch region of power spectra derived from atomic trajectories. The classical simulations, using the CLAYFF force field, include either a standard harmonic potential or a new Morse potential parametrized for both dioctahedral and trioctahedral phases for the O–H bond stretch. Comparisons of classical results with experimental values and with ab initio molecular dynamics simulations indicate improvements in the simulation of hydroxyl orientation relative to the clay octahedral sheet and in the O–H bond stretch in the high frequency region of the power spectrum.

1.
G. W.
Brindley
and
G.
Brown
,
Crystal Structures of Clay Minerals and Their X-Ray Identification
(
Mineralogical Society
,
London
,
1980
).
2.
S. W.
Bailey
,
Rev. Mineral.
19
,
1
(
1988
).
3.
R. T.
Cygan
,
J. A.
Greathouse
,
H.
Heinz
, and
A. G.
Kalinichev
, “Molecular models and simulations of layered materials,”
J. Mater. Chem.
(unpublished).
4.
H. C.
Greenwell
,
W.
Jones
,
P. V.
Coveney
, and
S.
Stackhouse
,
J. Mater. Chem.
16
,
708
(
2006
).
5.
J. P.
Larentzos
,
J. A.
Greathouse
, and
R. T.
Cygan
,
J. Phys. Chem. C
111
,
12752
(
2007
).
6.
R. T.
Cygan
,
J. -J.
Liang
, and
A. G.
Kalinichev
,
J. Phys. Chem. B
108
,
1255
(
2004
).
7.
V.
Timon
,
G. I.
Sainz-Diaz
,
V.
Botella
, and
A.
Hernandez-Laguna
,
Am. Mineral.
88
,
1788
(
2003
).
8.
D.
Tunega
,
B. A.
Goodman
,
G.
Haberhauer
,
T. G.
Reichenauer
,
M. H.
Gerzabek
, and
H.
Lischka
,
Clays Clay Miner.
55
,
220
(
2007
).
9.
V.
Botella
,
V.
Timon
,
E.
Escamilla-Roa
,
A.
Hernandez-Languna
, and
C. I.
Sainz-Diaz
,
Phys. Chem. Miner.
31
,
475
(
2004
).
10.
S. V.
Churakov
,
Geochim. Cosmochim. Acta
71
,
1130
(
2007
).
11.
S. V.
Churakov
,
J. Phys. Chem. B
110
,
4135
(
2006
).
12.
G.
Sposito
,
The Surface Chemistry of Soils
(
Oxford University Press
,
New York
,
1984
).
13.
J. J.
Liang
,
F. C.
Hawthorne
, and
I. P.
Swainson
,
Can. Mineral.
36
,
1017
(
1998
).
14.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
15.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
16.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
17.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
18.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
19.
D.
Asthagiri
,
L. R.
Pratt
, and
J. D.
Kress
,
Phys. Rev. E
68
,
041505
(
2003
).
20.
D.
Tunega
,
M. H.
Gerzabek
,
G.
Haberhauer
, and
H.
Lischka
,
Eur. J. Soil Sci.
58
,
680
(
2007
).
21.
D.
Tunega
,
G.
Haberkauer
,
M. H.
Gerzabek
, and
H.
Lischka
,
Soil Sci.
169
,
44
(
2004
).
22.
T. A.
Halgren
,
J. Am. Chem. Soc.
114
,
7827
(
1992
).
23.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
24.
S. J.
Plimpton
,
R.
Pollock
, and
M.
Stevens
,
Eighth SIAM Conference on Parallel Processing for Scientific Computing
,
1997
(unpublished).
25.
TINKER, software tools for molecular design, Version 4.2 (http://dasher.wustl.edu/tinker/) (
2004
).
26.
J. R.
Reimers
and
R. O.
Watts
,
Mol. Phys.
52
,
357
(
1984
).
27.
V. C.
Farmer
, in
The Infrared Spectra of Minerals
, edited by
V. C.
Farmer
(
Mineralogical Society
,
London
,
1974
), p.
331
.
28.
R. L.
Frost
and
L.
Rintoul
,
Appl. Clay Sci.
11
,
171
(
1996
).
29.
W. Z.
Xu
,
C. T.
Johnston
,
P.
Parker
, and
S. F.
Agnew
,
Clays Clay Miner.
48
,
120
(
2000
).
30.
C. T.
Johnston
and
G. S.
Premachandra
,
Langmuir
17
,
3712
(
2001
).
You do not currently have access to this content.