We apply the recently developed Liouville space hierarchical equations of motion (HEOM) method to calculate the quantum rate dynamics for a model system of proton transfer reaction in condensed phase, which consist of a double well coupled to a harmonic bath with the Debye spectral density. The HEOM method provides a new way to directly calculate nonequilibrium reduced system dynamics, and the calculated reaction rate constants compare well with previous numerical exact results. The HEOM method also allows us to perform long time simulations, which enables systematic studies of the reaction dynamics at low frictions. The applicability of perturbative quantum master equations at various orders is also investigated by comparing with numerical exact HEOM results.

1.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
2.
W. H.
Miller
,
J. Phys. Chem. A
102
,
793
(
1998
).
3.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
4.
E.
Pollak
and
P.
Talkner
,
Chaos
15
,
026116
(
2005
).
5.
T.
Yamamoto
,
J. Chem. Phys.
33
,
281
(
1960
).
6.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
7.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
8.
R.
Hernandez
and
G. A.
Voth
,
Chem. Phys.
233
,
243
(
1998
).
9.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
10.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
11.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
12.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
2000
).
13.
E.
Geva
,
Q.
Shi
, and
G. A.
Voth
,
J. Chem. Phys.
115
,
9209
(
2001
).
14.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
116
,
3223
(
2002
).
15.
T.
Yamamoto
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
116
,
7335
(
2002
).
16.
J. -L.
Liao
and
E.
Pollak
,
J. Chem. Phys.
116
,
2718
(
2002
).
17.
W. H.
Miller
,
M. C. Y.
Zhao
, and
S.
Yang
,
J. Chem. Phys.
119
,
1329
(
2003
).
18.
T.
Yamamoto
and
W. H.
Miller
,
J. Chem. Phys.
122
,
044106
(
2005
).
19.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
084106
(
2005
).
20.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
034102
(
2005
).
21.
A.
Pomyalov
and
D. J.
Tannor
,
J. Chem. Phys.
123
,
204111
(
2005
).
22.
H.
Wang
,
D. E.
Skinner
, and
M.
Thoss
,
J. Chem. Phys.
125
,
174502
(
2006
).
23.
S. Y.
Kim
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
124
,
244102
(
2006
).
24.
I. R.
Craig
,
M.
Thoss
, and
H. B.
Wang
,
J. Chem. Phys.
127
,
144503
(
2007
).
26.
E.
Wigner
,
Chem. Phys.
5
,
720
(
1937
).
27.
28.
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
).
29.
E.
Pollak
and
J. -L.
Liao
,
J. Chem. Phys.
108
,
2733
(
1998
).
30.
Y.
Tanimura
and
R. K.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
32.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
33.
R. X.
Xu
,
P.
Cui
,
X. Q.
Li
,
Y.
Mo
, and
Y. J.
Yan
,
J. Chem. Phys.
122
,
041103
(
2005
).
34.
Y.
Yan
,
F.
Yang
,
Y.
Liu
, and
J.
Shao
,
Chem. Phys. Lett.
395
,
216
(
2004
).
35.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
36.
Y.
Tanimura
and
P. J.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
37.
Y.
Tanimura
and
P. J.
Wolynes
,
J. Chem. Phys.
96
,
8485
(
1992
).
38.
Q.
Shi
,
L. P.
Chen
,
G. J.
Nan
,
R. X.
Xu
, and
Y. J.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
39.
Q.
Shi
,
L. P.
Chen
,
G. J.
Nan
,
R. X.
Xu
, and
Y. J.
Yan
, “Electron transfer dynamics: Zusman equation versus exact theory,”
J. Chem. Phys.
(unpublished).
40.
M.
Schröder
,
M.
Schreiber
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
126
,
114102
(
2007
).
41.
Y.
Zhou
,
Y. A.
Yan
, and
J. S.
Shao
,
Europhys. Lett.
72
,
334
(
2005
).
42.
Y.
Zhou
and
J.
Shao
,
J. Chem. Phys.
128
,
034106
(
2008
).
43.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
44.
C.
Meier
and
D.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
You do not currently have access to this content.