The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

1.
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
New Jersey
,
1998
).
2.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2004
).
3.
K.
Blum
,
Density Matrix Theory and Applications
(
Plenum
,
New York
,
1996
).
4.
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
,
Adv. Chem. Phys.
93
,
77
(
1996
).
5.
Y. J.
Yan
and
R. X.
Xu
,
Annu. Rev. Phys. Chem.
56
,
187
(
2005
).
6.
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
7.
R.
Zwanzig
,
Lect. Theor. Phys.
3
,
106
(
1960
).
8.
R.
Zwanzig
,
Physica
30
,
1109
(
1964
).
9.
N.
Hashitsumae
,
F.
Shibata
, and
M.
Shingū
,
J. Stat. Phys.
17
,
155
(
1977
).
10.
F.
Shibata
,
Y.
Takahashi
, and
N.
Hashitsume
,
J. Stat. Phys.
17
,
171
(
1977
).
11.
S.
Jang
,
J.
Cao
, and
R. J.
Silbey
,
J. Chem. Phys.
116
,
2705
(
2002
).
12.
B. B.
Laird
,
J.
Budimir
, and
J. L.
Skinner
,
J. Chem. Phys.
94
,
4391
(
1991
).
13.
B. B.
Laird
and
J. L.
Skinner
,
J. Chem. Phys.
94
,
4405
(
1991
).
14.
D. R.
Reichman
and
R. J.
Silbey
,
J. Chem. Phys.
104
,
1506
(
1996
).
15.
M.
Schröder
,
M.
Schreiber
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
126
,
114102
(
2007
).
16.
M.
Sparpaglione
and
S.
Mukamel
,
J. Chem. Phys.
88
,
3263
(
1988
).
17.
A. A.
Golosov
and
D. R.
Reichman
,
J. Chem. Phys.
115
,
9848
(
2001
).
18.
A. A.
Golosov
and
D. R.
Reichman
,
J. Chem. Phys.
115
,
9862
(
2001
).
19.
A.
Pomyalov
and
D. J.
Tannor
,
J. Chem. Phys.
123
,
204111
(
2005
).
20.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
110
,
138
(
1999
).
21.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
112
,
2095
(
2000
).
22.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
119
,
12063
(
2003
).
23.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
120
,
10647
(
2004
).
24.
M. -L.
Zhang
,
B. J.
Ka
, and
E.
Geva
,
J. Chem. Phys.
125
,
044106
(
2006
).
25.
D.
Egorova
,
M.
Thoss
,
W.
Domcke
, and
H.
Wang
,
J. Chem. Phys.
119
,
2761
(
2003
).
26.
M.
Schröder
,
U.
Kleinekathöfer
, and
M.
Schreiber
,
J. Chem. Phys.
124
,
084903
(
2006
).
27.
H.
Grabert
,
P.
Schramm
, and
G. L.
Ingold
,
Phys. Rep.
168
,
115
(
1988
).
28.
U.
Weiss
,
Quantum Dissipative Systems
, 2nd ed. (
World Scientific
,
London
,
1999
).
29.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford
,
New York
,
1995
).
30.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
31.
C. H.
Mak
and
D.
Chandler
,
Phys. Rev. A
41
,
5709
(
1990
).
32.
C.
Mak
and
R.
Egger
,
Adv. Chem. Phys.
93
,
39
(
1996
).
33.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
34.
N.
Makri
and
D.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
35.
N.
Makri
and
D.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
36.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
37.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
38.
Y.
Tanimura
and
R. K.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
40.
Y.
Tanimura
and
P. J.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
41.
R. X.
Xu
,
P.
Cui
,
X. Q.
Li
,
Y.
Mo
, and
Y. J.
Yan
,
J. Chem. Phys.
122
,
041103
(
2005
).
42.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
43.
J. S.
Jin
,
X.
Zheng
, and
Y. J.
Yan
,
J. Chem. Phys.
128
,
234703
(
2008
).
44.
A.
Ishizaki
and
Y.
Tanimura
,
Chem. Phys.
347
,
185
(
2008
).
45.
As shown in this study, when taking the time derivative of the path integral expression [Eq. (16)], the contributions from the system action and influence functional can not be separated in general cases [see the second term on the right hand side of Eq. (22)]. The authors in Ref. 44 tried to find a way to separate them using equations in the interaction picture. However, there is an error in the derivation from Eqs. (2.12) and (2.13) to (2.14) in Ref. 44: the time ordering in Eq. (2.12) should be kept in Eq. (2.14), so the equation is again not separable, since φ̂(I)(tj) at different time does not commute. The only case Eq. (2.14) holds is when φ̂(I)(tj) at different time commutes, i.e., when φ̂ commutes with ĤS. This is just the case of pure dephasing.
46.
F.
Haake
,
Quantum Statistics in Optics and Solid State Physics
(
Springer-Verlag
,
Berlin
,
1973
).
47.
R. P.
Feynman
and
F. L.
Vernon
, Jr.
,
Ann. Phys.
24
,
118
(
1963
).
48.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
You do not currently have access to this content.