Introducing a charge into a solid such as a metal oxide through chemical, electrical, or optical means can dramatically change its chemical or physical properties. To minimize its free energy, a lattice will distort in a material specific way to accommodate (screen) the Coulomb and exchange interactions presented by the excess charge. The carrier-lattice correlation in response to these interactions defines the spatial extent of the perturbing charge and can impart extraordinary physical and chemical properties such as superconductivity and catalytic activity. Here we investigate by experiment and theory the atomically resolved distribution of the excess charge created by a single oxygen atom vacancy and a hydroxyl (OH) impurity defects on rutile TiO2(110) surface. Contrary to the conventional model where the charge remains localized at the defect, scanning tunneling microscopy and density functional theory show it to be delocalized over multiple surrounding titanium atoms. The characteristic charge distribution controls the chemical, photocatalytic, and electronic properties of TiO2 surfaces.

1.
S.
Wendt
,
P. T.
Sprunger
,
E.
Lira
,
G. K. H.
Madsen
,
Z. S.
Li
,
J. O.
Hansen
,
J.
Matthiesen
,
A.
Blekinge-Rasmussen
,
E.
Laegsgaard
,
B.
Hammer
, and
F.
Besenbacher
,
Science
320
,
1755
(
2008
).
2.
K.
McElroy
,
J.
Lee
,
J. A.
Slezak
,
D. H.
Lee
,
H.
Eisaki
,
S.
Uchida
, and
J. C.
Davis
,
Science
309
,
1048
(
2005
).
3.
M.
Varela
,
S. D.
Findlay
,
A. R.
Lupini
,
H. M.
Christen
,
A. Y.
Borisevich
,
N.
Dellby
,
O. L.
Krivanek
,
P. D.
Nellist
,
M. P.
Oxley
,
L. J.
Allen
, and
S. J.
Pennycook
,
Phys. Rev. Lett.
92
,
095502
(
2004
).
4.
J.
Zaanen
,
G. A.
Sawatzky
, and
J. W.
Allen
,
Phys. Rev. Lett.
55
,
418
(
1985
).
5.
A.
Ohtomo
,
D. A.
Muller
,
J. L.
Grazul
, and
H. Y.
Hwang
,
Nature (London)
419
,
378
(
2002
).
6.
V. E.
Henrich
,
The Surface Science of Metal Oxide
(
Cambridge University Press
,
Cambridge
,
1994
).
7.
S. A.
Kivelson
,
E.
Fradkin
, and
V. J.
Emery
,
Nature (London)
393
,
550
(
1998
).
8.
C. L.
Pang
,
R.
Lindsay
, and
G.
Thornton
,
Chem. Soc. Rev.
37
,
2328
(
2008
).
9.
K.
Onda
,
B.
Li
,
J.
Zhao
,
K. D.
Jordan
,
J. L.
Yang
, and
H.
Petek
,
Science
308
,
1154
(
2005
).
10.
R.
Schaub
,
E.
Wahlstrom
,
A.
Ronnau
,
E.
Laegsgaard
,
I.
Stensgaard
, and
F.
Besenbacher
,
Science
299
,
377
(
2003
).
11.
S.
Wendt
,
R.
Schaub
,
J.
Matthiesen
,
E. K.
Vestergaard
,
E.
Wahlstrom
,
M. D.
Rasmussen
,
P.
Thostrup
,
L. M.
Molina
,
E.
Laegsgaard
,
I.
Stensgaard
,
B.
Hammer
, and
F.
Besenbacher
,
Surf. Sci.
598
,
226
(
2005
).
12.
S.
Wendt
,
J.
Matthiesen
,
R.
Schaub
,
E. K.
Vestergaard
,
E.
Laegsgaard
,
F.
Besenbacher
, and
B.
Hammer
,
Phys. Rev. Lett.
96
,
066107
(
2006
).
13.
L. M.
Liu
,
B.
McAllister
,
H. Q.
Ye
, and
P.
Hu
,
J. Am. Chem. Soc.
128
,
4017
(
2006
).
14.
Y.
Sakai
and
S.
Ehara
,
Jpn. J. Appl. Phys., Part 2
40
,
L773
(
2001
).
15.
M.
Batzill
,
K.
Katsiev
,
D. J.
Gaspar
, and
U.
Diebold
,
Phys. Rev. B
66
,
235401
(
2002
).
16.
P.
Mutombo
,
A. M.
Kiss
,
A.
Berko
, and
V.
Chab
,
Modell. Simul. Mater. Sci. Eng.
16
,
025007
(
2008
).
17.
G. H.
Enevoldsen
,
A. S.
Foster
,
M. C.
Christensen
,
J. V.
Lauritsen
, and
F.
Besenbacher
,
Phys. Rev. B
76
,
205415
(
2007
).
18.
T. L.
Thompson
and
J. T.
Yates
,
Chem. Rev. (Washington, D.C.)
106
,
4428
(
2006
).
19.
Z.
Zhang
,
O.
Bondarchuk
,
B. D.
Kay
,
J. M.
White
, and
Z.
Dohnálek
,
J. Phys. Chem. B
110
,
21840
(
2006
).
20.
T. L.
Thompson
and
J. T.
Yates
,
J. Phys. Chem. B
110
,
7431
(
2006
).
21.
S.
Thiel
,
G.
Hammerl
,
A.
Schmehl
,
C. W.
Schneider
, and
J.
Mannhart
,
Science
313
,
1942
(
2006
).
22.
K. S.
Takahashi
,
M.
Gabay
,
D.
Jaccard
,
K.
Shibuya
,
T.
Ohnishi
,
M.
Lippmaa
, and
J. M.
Triscone
,
Nature (London)
441
,
195
(
2006
).
23.
A.
Brinkman
,
M.
Huijben
,
M.
Van Zalk
,
J.
Huijben
,
U.
Zeitler
,
J. C.
Maan
,
G.
Van der Wiel
,
G.
Rijnders
,
D. H. A.
Blank
, and
H.
Hilgenkamp
,
Nature Mater.
6
,
493
(
2007
).
24.
M.
Chen
,
Y.
Cai
,
Z.
Yan
, and
D. W.
Goodman
,
J. Am. Chem. Soc.
128
,
6341
(
2006
).
25.
T.
Minato
,
T.
Susaki
,
S.
Shiraki
,
H. S.
Kato
,
M.
Kawai
, and
K. I.
Aika
,
Surf. Sci.
566–568
,
1012
(
2004
).
26.
G. E.
Brown
,
Chem. Rev. (Washington, D.C.)
99
,
77
(
1999
).
27.
D.
Matthey
,
J. G.
Wang
,
S.
Wendt
,
J.
Matthiesen
,
R.
Schaub
,
E.
Laegsgaard
,
B.
Hammer
, and
F.
Besenbacher
,
Science
315
,
1692
(
2007
).
28.
M.
Gratzel
,
Nature (London)
414
,
338
(
2001
).
29.
K.
Onda
,
B.
Li
, and
H.
Petek
,
Phys. Rev. B
70
,
045415
(
2004
).
30.
O.
Bikondoa
,
C. L.
Pang
,
R.
Ithnin
,
C. A.
Muryn
,
H.
Onishi
, and
G.
Thornton
,
Nature Mater.
5
,
189
(
2006
).
31.
S.
Kajita
,
T.
Minato
,
S. H.
Kato
,
M.
Kawai
, and
T.
Nakayama
,
J. Chem. Phys.
127
,
104709
(
2007
).
32.
G.
Ketteler
,
S.
Yamamoto
,
H.
Bluhm
,
K.
Andersson
,
D. E.
Starr
,
D. F.
Ogletree
,
H.
Ogasawara
,
A.
Nilsson
, and
M.
Salmeron
,
J. Phys. Chem. C
111
,
8278
(
2007
).
33.
V. E.
Henrich
,
G.
Dresselhaus
, and
H. J.
Zeiger
,
Phys. Rev. Lett.
36
,
1335
(
1976
).
34.
M. A.
Henderson
,
W. S.
Epling
,
C. H. F.
Peden
, and
C. L.
Perkins
,
J. Phys. Chem. B
107
,
534
(
2003
).
35.
C. R.
Wang
and
Y. S.
Xu
,
Surf. Sci.
219
,
L537
(
1989
).
36.
P. J. D.
Lindan
,
N. M.
Harrison
,
M. J.
Gillan
, and
J. A.
White
,
Phys. Rev. B
55
,
15919
(
1997
).
37.
T.
Bredow
and
G.
Pacchioni
,
Chem. Phys. Lett.
355
,
417
(
2002
).
38.
A. T.
Paxton
and
L.
Thien-Nga
,
Phys. Rev. B
57
,
1579
(
1998
).
39.
A.
Vijay
,
G.
Mills
, and
H.
Metiu
,
J. Chem. Phys.
118
,
6536
(
2003
).
40.
P.
Kruger
,
S.
Bourgeois
,
B.
Domenichini
,
H.
Magnan
,
D.
Chandesris
,
P.
Le Fevre
,
A. M.
Flank
,
J.
Jupille
,
L.
Floreano
,
A.
Cossaro
,
A.
Verdini
, and
A.
Morgante
,
Phys. Rev. Lett.
100
,
055501
(
2008
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
42.
C.
Di Valentin
,
G.
Pacchioni
, and
A.
Selloni
,
Phys. Rev. Lett.
97
,
166803
(
2006
).
43.
G.
Teobaldi
,
W. A.
Hofer
,
O.
Bikondoa
,
C. L.
Pang
,
G.
Cabailh
, and
G.
Thornton
,
Chem. Phys. Lett.
437
,
73
(
2007
).
44.
C.
Di Valentin
,
J. Chem. Phys.
127
,
154705
(
2007
).
45.
J.
Yoshinobu
,
M.
Kawai
,
I.
Imamura
,
F.
Marumo
,
R.
Suzuki
,
H.
Ozaki
,
M.
Aoki
,
S.
Masuda
, and
M.
Aida
,
Phys. Rev. Lett.
79
,
3942
(
1997
).
46.
S.
Suzuki
,
K.
Fukui
,
H.
Onishi
, and
Y.
Iwasawa
,
Phys. Rev. Lett.
84
,
2156
(
2000
).
47.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
48.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
49.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
50.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
51.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
52.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
53.
M.
McEllistrem
,
G.
Haase
,
D.
Chen
, and
R. J.
Hamers
,
Phys. Rev. Lett.
70
,
2471
(
1993
).
54.
S.
Yoshida
,
Y.
Kanitani
,
R.
Oshima
,
Y.
Okada
,
O.
Takeuchi
, and
H.
Shigekawa
,
Phys. Rev. Lett.
98
,
026802
(
2007
).
55.
J. A.
Rodriguez
,
G.
Liu
,
T.
Jirsak
,
J.
Hrbek
,
Z. P.
Chang
,
J.
Dvorak
, and
A.
Maiti
,
J. Am. Chem. Soc.
124
,
5242
(
2002
).
56.
J.
Zhao
,
B.
Li
,
K.
Onda
,
M.
Feng
, and
H.
Petek
,
Chem. Rev.
106
,
4402
(
2006
).
57.
J.
Zhao
,
B.
Li
,
K. D.
Jordan
,
J. L.
Yang
, and
H.
Petek
,
Phys. Rev. B
73
,
195309
(
2006
).
58.
The unoccupied state in Fig. 5 is not atomically resolved as Fig. 3. This may be due to image processing software, as well as by machine condition. Both images have been obtained with different tips of different STM machines (even in different countries). However, both images clearly show great mutual consistency in terms of topological differences of oxygen vacancies and OH defects at different electronic states. This should be clear and reproducible evidence that what we see in the STM images in Figs. 3 and 5 is not artifact but real existence of oxygen vacancy and OH defects.
59.
V. R.
Saunders
, CRYSTAL2003 User’s Manual, Torino,
2003
.
60.
S.
Mezhenny
,
P.
Maksymovych
,
T. L.
Thompson
,
O.
Diwald
,
D.
Stahl
,
S. D.
Walck
, and
J. T.
Yates
,
Chem. Phys. Lett.
369
,
152
(
2003
).
61.
Y. F.
Zhang
,
W.
Lin
,
Y.
Li
,
K. N.
Ding
, and
J. Q.
Li
,
J. Phys. Chem. B
109
,
19270
(
2005
).
62.
M.
Nolan
,
S. C.
Parker
, and
G. W.
Watson
,
Surf. Sci.
595
,
223
(
2005
).
63.
J.
Pascual
,
J.
Camassel
, and
H.
Mathieu
,
Phys. Rev. B
18
,
5606
(
1978
).
64.
A.
Amtout
and
R.
Leonelli
,
Phys. Rev. B
51
,
6842
(
1995
).
65.
H.
Tang
,
F.
Levy
,
H.
Berger
, and
P. E.
Schmid
,
Phys. Rev. B
52
,
7771
(
1995
).
66.
J.
Muscat
,
A.
Wander
, and
N. M.
Harrison
,
Chem. Phys. Lett.
342
,
397
(
2001
).
67.
A.
Fujimori
,
A. E.
Bocquet
,
K.
Morikawa
,
K.
Kobayashi
,
T.
Saitoh
,
Y.
Tokura
,
I.
Hase
, and
M.
Onoda
,
J. Phys. Chem. Solids
57
,
1379
(
1996
).
68.
D. A.
Panayotov
and
J. T.
Yates
,
Chem. Phys. Lett.
436
,
204
(
2007
).
69.
D. S.
Warren
and
A. J.
McQuillan
,
J. Phys. Chem. B
108
,
19373
(
2004
).
70.
J. R.
McCormick
,
J. R.
Kitchin
,
M. A.
Barteau
, and
J. G.
Chen
,
Surf. Sci.
545
,
L741
(
2003
).
71.
E.
Hendry
,
F.
Wang
,
J.
Shan
,
T. F.
Heinz
, and
M.
Bonn
,
Phys. Rev. B
69
,
081101
(
2004
).
72.
J. F.
Baumard
and
F.
Gervais
,
Phys. Rev. B
15
,
2316
(
1977
).
73.
S. L.
Cooper
,
Structure and Bonding
(
Springer-Verlag
,
Berlin
,
2001
).
You do not currently have access to this content.