A numerical method to calculate the four-center electron-repulsion integrals for strictly localized pseudoatomic orbital basis sets has been developed. Compared to the conventional Gaussian expansion method, this method has an advantage in the ease of combination with density functional calculations. Additional mathematical derivations are also presented including the analytic derivatives of the integrals with respect to atomic positions and spatial damping of the Coulomb interaction due to the screening effect. In the numerical test for a simple molecule, the convergence up to in energy is successfully obtained with a feasible cost of computation.
REFERENCES
1.
A. D.
Becke
, J. Chem. Phys.
98
, 1372
(1993
).2.
A. D.
Becke
, J. Chem. Phys.
98
, 5648
(1993
).3.
P. J.
Stephens
, F. J.
Devlin
, C. F.
Chabalowski
, and M. J.
Frisch
, J. Phys. Chem.
98
, 11623
(1994
).4.
C.
Adamo
and V.
Barone
, J. Chem. Phys.
110
, 6158
(1999
).5.
P.
Mori-Sánchez
, A. J.
Cohen
, and W.
Yang
, Phys. Rev. Lett.
100
, 146401
(2008
).6.
J.
Heyd
, G. E.
Scuseria
, and M.
Ernzerhof
, J. Chem. Phys.
118
, 8207
(2003
).7.
J.
Heyd
and G. E.
Scuseria
, J. Chem. Phys.
121
, 1187
(2004
).8.
I.
Shavitt
and M.
Karplus
, J. Chem. Phys.
36
, 550
(1962
).9.
H.
Taketa
, S.
Huzinaga
, and K.
O-ohata
, J. Phys. Soc. Jpn
21
, 2313
(1966
).10.
J.
Fernández Rico
, R.
López
, I.
Ema
, and G.
Ramírez
, J. Comput. Chem.
25
, 1987
(2004
).11.
A. S.
Torralba
, M.
Todorović
, V.
Brázdová
, R.
Choudhury
, T.
Miyazaki
, M. J.
Gillan
, and D. R.
Bowler
, J. Phys.: Condens. Matter
20
, 294206
(2008
).12.
J. M.
Soler
, E.
Artacho
, J. D.
Gale
, A.
Garciá
, J.
Junquera
, P.
Ordejón
, and D.
Sánchez-Portal
, J. Phys.: Condens. Matter
14
, 2745
(2002
).13.
T.
Ozaki
and H.
Kino
, Phys. Rev. B
69
, 195113
(2004
).14.
T.
Ozaki
and H.
Kino
, Phys. Rev. B
72
, 045121
(2005
).15.
T.
Ozaki
, Phys. Rev. B
74
, 245101
(2006
).16.
17.
P. -O.
Löwdin
, Adv. Phys.
5
, 1
(1956
).18.
A. E.
Siegman
, Opt. Lett.
1
, 13
(1977
).19.
J. D.
Talman
, J. Comput. Phys.
29
, 35
(1978
).20.
D.
Lemoine
, J. Chem. Phys.
101
, 3936
(1994
).21.
O. A.
Sharafeddin
, H. F.
Bowen
, D. J.
Kouri
, and D. K.
Hoffman
, J. Comput. Phys.
100
, 294
(1992
).22.
For example, in the discrete Bessel transform (Ref. 20), an interpolation process is necessary because the sampling points vary for transforms of different orders. While, in the asymptotic expansion method (Ref. 21), high-order transforms are quite unstable due to the factor inversely proportional to the order of the variable where is the order of transform.
23.
J. D.
Talman
, Int. J. Quantum Chem.
107
, 1578
(2007
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.