In the Ermak–McCammon algorithm for Brownian dynamics, the hydrodynamic interactions (HIs) between N spherical particles are described by a 3N×3N diffusion tensor. This tensor has to be factorized at each time step with a runtime of O(N3), making the calculation of the correlated random displacements the bottleneck for many-particle simulations. Here we present a faster algorithm for this step, which is based on a truncated expansion of the hydrodynamic multiparticle correlations as two-body contributions. The comparison to the exact algorithm and to the Chebyshev approximation of Fixman verifies that for bead-spring polymers this approximation yields about 95% of the hydrodynamic correlations at an improved runtime scaling of O(N2) and a reduced memory footprint. The approximation is independent of the actual form of the hydrodynamic tensor and can be applied to arbitrary particle configurations. This now allows to include HI into large many-particle Brownian dynamics simulations, where until now the runtime scaling of the correlated random motion was prohibitive.

1.
R. R.
Gabdoulline
and
R. C.
Wade
,
Curr. Opin. Struct. Biol.
12
,
204
(
2002
).
2.
E. L.
Gross
and
D. C.
Pearson
,
Biophys. J.
85
,
2055
(
2003
).
3.
C.
Gorba
,
T.
Geyer
, and
V.
Helms
,
J. Chem. Phys.
121
,
457
(
2004
).
4.
A.
Spaar
,
C.
Dammer
,
R. R.
Gabdoulline
,
R. C.
Wade
, and
V.
Helms
,
Biophys. J.
90
,
1913
(
2006
).
5.
J. P.
Hernández-Ortiz
,
H.
Ma
,
J. J.
de Pablo
, and
M. D.
Graham
,
Phys. Fluids
18
,
123101
(
2006
).
6.
M.
Dlugosz
,
J. A.
Antosiewicz
, and
J.
Trylska
,
J. Chem. Theory Comput.
4
,
549
(
2008
).
8.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
Amsterdam
,
1996
).
9.
J. M.
Deutch
and
I.
Oppenheim
,
J. Chem. Phys.
54
,
3547
(
1971
).
10.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
11.
S. R.
McGuffee
and
A. H.
Elcock
,
J. Am. Chem. Soc.
128
,
12098
(
2006
).
12.
P.
Ahlrichs
,
R.
Everaers
, and
B.
Dünweg
,
Phys. Rev. E
64
,
040501
(R) (
2001
).
13.
T.
Zhou
and
S. B.
Chen
,
J. Chem. Phys.
124
,
034904
(
2006
).
14.
P.
Szymczak
and
M.
Cieplak
,
J. Chem. Phys.
127
,
155106
(
2007
).
15.
M.
Fixman
,
Macromolecules
19
,
1204
(
1986
).
16.
D. M.
Heyes
,
J. Phys.: Condens. Matter
7
,
8857
(
1995
).
17.
A. J.
Banchio
and
J. F.
Brady
,
J. Chem. Phys.
118
,
10323
(
2003
).
18.
J.
Huang
and
T.
Schlick
,
J. Chem. Phys.
117
,
8573
(
2002
).
19.
E.
Dickinson
,
S. A.
Allison
, and
J. A.
McCammon
,
J. Chem. Soc., Faraday Trans. 2
81
,
591
(
1985
).
20.
J. G.
Kirkwood
and
J.
Riseman
,
J. Chem. Phys.
16
,
565
(
1948
).
21.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
22.
H.
Yamakawa
,
J. Chem. Phys.
53
,
436
(
1970
).
23.
J.
Garcia de la Torre
and
V. A.
Bloomfield
,
Biopolymers
16
,
1747
(
1977
).
24.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77
(
Cambridge University Press
,
Cambridge
,
1997
), Vol.
1
.
25.
R. M.
Jendrejack
,
M. D.
Graham
, and
J. J.
de Pablo
,
J. Chem. Phys.
113
,
2894
(
2000
).
26.
M.
Galassi
,
J.
Davies
,
J.
Theiler
,
B.
Gough
,
G.
Jungman
,
M.
Booth
, and
F.
Rossi
,
GNU Scientific Library Reference Manual
, 2nd ed. (
Network Theory
,
Bristol
,
2006
).
27.
B.
Li
,
N.
Madras
, and
A. D.
Sokal
,
J. Stat. Phys.
80
,
661
(
1995
).
28.
B.
Dünweg
,
D.
Reith
,
M.
Steinhauser
, and
K.
Kremer
,
J. Chem. Phys.
117
,
914
(
2002
).
29.
B.
Liu
and
B.
Dünweg
,
J. Chem. Phys.
118
,
8061
(
2003
).
30.
G.
De Fabritiis
,
M.
Serrano
,
P.
Español
, and
P. V.
Coveney
,
Physica A
361
,
429
(
2006
).
31.
J.
Garcia de la Torre
and
V. A.
Bloomfield
,
Q. Rev. Biophys.
14
,
81
(
1981
).
You do not currently have access to this content.