We elaborate how holonomic constraints can be incorporated into the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework of nonequilibrium thermodynamics. Dirac’s ideas for constructing constrained Poisson brackets are extended to dissipative brackets. The construction is presented such that it can be put into practice most readily. We illustrate the procedure by developing a symmetric thermodynamic description of diffusion in multicomponent systems and, as a further example, we impose an incompressibility constraint. As a consequence of its more elaborate and restrictive structure, GENERIC removes the ambiguities occurring in the classical thermodynamics of irreversible processes when one works with redundant variables.

1.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
, 2nd ed. (
Dover
,
New York
,
1984
).
2.
M.
Grmela
and
H. C.
Öttinger
,
Phys. Rev. E
56
,
6620
(
1997
).
3.
H. C.
Öttinger
and
M.
Grmela
,
Phys. Rev. E
56
,
6633
(
1997
).
4.
H. C.
Öttinger
,
Beyond Equilibrium Thermodynamics
(
Wiley
,
Hoboken
,
2005
).
5.
I.
Dorfman
,
Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Science: Theory and Applications
(
Wiley
,
Chichester
,
1993
).
6.
A. N.
Beris
and
B. J.
Edwards
,
The Thermodynamics of Flowing Systems
(
Oxford University Press
,
New York
,
1994
).
7.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, 1st ed. (
Wiley
,
New York
,
1960
).
8.
S. R.
de Groot
,
Thermodynamics of Irreversible Processes
(
North-Holland
,
Amsterdam
,
1951
).
9.
D.
Bedeaux
,
S.
Kjelstrup
, and
H. C.
Öttinger
,
Physica A
371
,
177
(
2006
).
10.
T.
Roubíček
,
Continuum Mech. Thermodyn.
17
,
496
(
2006
).
11.
T.
Roubíček
,
SIAM J. Math. Anal.
39
,
863
(
2007
).
12.
A. N.
Beris
and
H. C.
Öttinger
,
J. Non-Newtonian Fluid Mech.
152
,
2
(
2008
).
You do not currently have access to this content.