Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller–Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50–100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcalmol1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.

1.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
Weinheim
,
2000
).
2.
F.
Neese
,
Coord. Chem. Rev.
(unpublished);
F.
Neese
,
J. Biol. Inorg. Chem.
11
,
702
(
2006
).
[PubMed]
3.
S.
Grimme
,
C.
Mück-Lichtenfeld
,
E. -U.
Würthwein
,
A. W.
Ehler
,
T. P. M.
Goumans
, and
K.
Lammertsma
,
J. Phys. Chem. A
110
,
2583
(
2006
);
[PubMed]
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
8
,
4398
(
2006
);
[PubMed]
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
);
[PubMed]
F.
Neese
,
T.
Schwabe
, and
S.
Grimme
,
J. Chem. Phys.
126
,
124115
(
2007
);
[PubMed]
S.
Grimme
and
F.
Neese
,
J. Chem. Phys.
127
,
154116
(
2007
);
[PubMed]
A.
Tarnopolsky
,
A.
Karton
,
R.
Sertchook
,
D.
Vuzman
, and
J. M. L.
Martin
,
J. Phys. Chem. A
112
,
3
(
2008
).
[PubMed]
4.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
8
,
4398
(
2006
).
5.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
).
6.
P. C.
Redfern
,
P.
Zupol
,
L. A.
Curtiss
, and
K.
Raghavachari
,
J. Phys. Chem. A
104
,
5850
(
2000
);
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
);
M. D.
Wodrich
,
C.
Corminbouef
, and
P. v. R.
Schleyer
,
Org. Lett.
8
,
3631
(
2006
);
[PubMed]
M.
Piacenza
and
S.
Grimme
,
ChemPhysChem
6
,
1554
(
2005
);
[PubMed]
S.
Grimme
,
J. Phys. Chem. A
109
,
3067
(
2005
);
[PubMed]
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
);
[PubMed]
S.
Grimme
,
Angew. Chem., Int. Ed.
45
,
4460
(
2006
);
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
);
[PubMed]
P. R.
Schreiner
,
Angew. Chem., Int. Ed.
119
,
4295
(
2007
);
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Chem. Theory Comput.
3
,
42
(
2007
);
[PubMed]
S.
Grimme
,
J.
Antony
,
T.
Schwabe
, and
C.
Mück-Lichtenfeld
,
Org. Biomol. Chem.
5
,
741
(
2007
).
[PubMed]
7.
F.
Neese
,
A.
Hansen
,
F.
Wennmohs
, and
S.
Grimme
,
Acc. Chem. Res.
(unpublished).
8.
M.
Schütz
,
G.
Hetzer
, and
H. J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
9.
P. E.
Maslen
and
M.
Head-Gordon
,
Chem. Phys. Lett.
283
,
102
(
1998
).
10.
A. K.
Wilson
and
J.
Almlöf
,
Theor. Chim. Acta
95
,
49
(
1997
);
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
11.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
);
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
);
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
);
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
);
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
);
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
);
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
12.
S.
Grimme
,
J. Phys. Chem. A
109
,
3067
(
2005
);
[PubMed]
M.
Gerenkamp
and
S.
Grimme
,
Chem. Phys. Lett.
392
,
229
(
2004
);
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
13.
M.
Kallay
and
P. R.
Surjan
,
J. Chem. Phys.
113
,
1359
(
2000
);
M.
Kallay
and
P. R.
Surjan
,
J. Chem. Phys.
115
,
2945
(
2001
);
M.
Kallay
,
P. G.
Szalay
, and
P. R.
Surjan
,
J. Chem. Phys.
117
,
980
(
2002
);
M.
Kallay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
);
M.
Kallay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
);
[PubMed]
M.
Kallay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
);
[PubMed]
M.
Kallay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
);
[PubMed]
S.
Hirata
,
J. Chem. Phys.
121
,
51
(
2004
);
[PubMed]
S.
Hirata
,
J. Phys. Chem. A
107
,
9887
(
2003
).
14.
M.
Heckert
,
M.
Kallay
,
D. P.
Tew
,
W.
Klopper
, and
J.
Gauss
,
J. Chem. Phys.
125
,
044108
(
2006
);
Y. J.
Bomble
,
J.
Vazquez
,
M.
Kallay
,
C.
Michauk
,
P. G.
Szalay
,
A. G.
Csaszar
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
064108
(
2006
);
A.
Tajti
,
P. G.
Szalay
,
A. G.
Csaszar
,
M.
Kallay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vazquez
, and
J. F.
Stanton
,
J. Chem. Phys.
121
,
11599
(
2004
).
[PubMed]
15.
A. D.
Boese
,
M.
Oren
,
O.
Atasoylu
,
J. M. L.
Martin
,
M.
Kallay
, and
J.
Gauss
,
J. Chem. Phys.
120
,
4129
(
2004
);
[PubMed]
A.
Karton
,
E.
Rabinovich
,
J. M. L.
Martin
, and
B.
Ruscic
,
J. Chem. Phys.
125
,
144108
(
2006
).
[PubMed]
16.
C.
Hampel
and
H. J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
);
M.
Schütz
and
H. -J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
17.
A.
El Azhary
,
G.
Rauhut
,
P.
Pulay
, and
H. J.
Werner
,
J. Chem. Phys.
108
,
5185
(
1998
);
G.
Hetzer
,
P.
Pulay
, and
H. J.
Werner
,
Chem. Phys. Lett.
290
,
143
(
1998
);
M.
Schütz
,
H. J.
Werner
,
R.
Lindh
, and
F. R.
Manby
,
J. Chem. Phys.
121
,
737
(
2004
).
[PubMed]
18.
G.
Rauhut
,
P.
Pulay
, and
H. J.
Werner
,
J. Comput. Chem.
19
,
1241
(
1998
).
19.
G.
Hetzer
,
M.
Schütz
,
H.
Stoll
, and
H. J.
Werner
,
J. Chem. Phys.
113
,
9443
(
2000
);
G.
Rauhut
and
H. J.
Werner
,
Phys. Chem. Chem. Phys.
3
,
4853
(
2001
).
20.
M.
Schütz
and
H. J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
21.
T.
Korona
and
H. J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
22.
H. -J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
23.
R. A.
Mata
and
H. J.
Werner
,
J. Chem. Phys.
125
,
184110
(
2006
).
24.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
);
[PubMed]
G. J. O.
Beran
and
M.
Head-Gordon
,
Mol. Phys.
104
,
1191
(
2006
);
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
122
,
034109
(
2005
);
J. E.
Subotnik
and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
064108
(
2005
);
P. E.
Maslen
,
A. D.
Dutoi
,
M. S.
Lee
,
Y. H.
Shao
, and
M.
Head-Gordon
,
Mol. Phys.
103
,
425
(
2005
);
R. A.
DiStasio
,
Y. S.
Jung
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
1
,
862
(
2005
);
[PubMed]
P. E.
Maslen
,
M. S.
Lee
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
319
,
205
(
2000
);
M. S.
Lee
,
P. E.
Maslen
, and
M.
Head-Gordon
,
J. Chem. Phys.
112
,
3592
(
2000
);
P. E.
Maslen
and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
7093
(
1998
).
25.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
26.
A.
Venkatnathan
,
A. B.
Szilva
,
D.
Walter
,
R. J.
Gdanitz
, and
E. A.
Carter
,
J. Chem. Phys.
120
,
1693
(
2004
);
[PubMed]
D.
Walter
,
A.
Venkatnathan
, and
E. A.
Carter
,
J. Chem. Phys.
118
,
8127
(
2003
);
D.
Walter
,
A. B.
Szilva
,
K.
Niedfeldt
, and
E. A.
Carter
,
J. Chem. Phys.
117
,
1982
(
2002
);
D.
Walter
and
E. A.
Carter
,
Chem. Phys. Lett.
346
,
177
(
2001
).
27.
A. A.
Auer
and
M.
Nooijen
,
J. Chem. Phys.
125
,
024104
(
2006
).
28.
S.
Saebø
,
W.
Tong
, and
P.
Pulay
,
J. Chem. Phys.
98
,
2170
(
1993
);
S.
Saebø
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
);
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
88
,
1884
(
1988
);
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
29.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1993
).
30.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
31.
32.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
33.
M.
Schütz
,
Phys. Chem. Chem. Phys.
4
,
3941
(
2002
).
34.
M.
Schütz
,
J. Chem. Phys.
116
,
8772
(
2002
).
35.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
125
,
104106
(
2006
);
[PubMed]
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
127
,
064107
(
2007
).
[PubMed]
36.
N. J.
Russ
and
T. D.
Crawford
,
J. Chem. Phys.
121
,
691
(
2004
).
37.
F.
Claeyssens
,
J. N.
Harvey
,
F. R.
Manby
,
R. A.
Mata
,
A. J.
Mulholland
,
K. E.
Ranaghan
,
M.
Schutz
,
S.
Thiel
,
W.
Thiel
, and
H. J.
Werner
,
Angew. Chem., Int. Ed.
45
,
6856
(
2006
);
N.
Runeberg
,
M.
Schütz
, and
H. J.
Werner
,
J. Chem. Phys.
110
,
7210
(
1999
).
38.
B. D.
Dunietz
and
R. A.
Friesner
,
J. Chem. Phys.
115
,
11052
(
2001
);
R. A.
Friesner
,
R. B.
Murphy
,
M. D.
Beachy
,
M. N.
Ringnalda
,
W. T.
Pollard
,
B. D.
Dunietz
, and
Y. X.
Cao
,
J. Phys. Chem. A
103
,
1913
(
1999
).
39.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
034103
(
2008
).
40.
W.
Meyer
,
Int. J. Quantum Chem.
S5
,
341
(
1971
).
41.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
42.
W.
Meyer
,
Theor. Chim. Acta
35
,
277
(
1974
).
43.
H. J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
);
P.
Rosmus
and
W.
Meyer
,
J. Chem. Phys.
69
,
2745
(
1978
);
R.
Ahlrichs
,
P.
Scharf
, and
C.
Ehrhardt
,
J. Chem. Phys.
82
,
890
(
1985
);
P. R.
Taylor
,
G. B.
Bacskay
,
A. C.
Hurley
, and
N. S.
Hush
,
J. Chem. Phys.
69
,
1971
(
1978
);
P.
Pulay
and
S.
Saebø
,
Chem. Phys. Lett.
117
,
37
(
1985
).
44.
W.
Meyer
, in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
 III
(
Plenum Press
,
New York
,
1977
), p.
413
.
45.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
);
P. R.
Taylor
,
G. B.
Bacskay
,
N. S.
Hush
, and
A. C.
Hurley
,
Chem. Phys. Lett.
41
,
444
(
1976
).
46.
S.
Koch
and
W.
Kutzelnigg
,
Theor. Chim. Acta
59
,
387
(
1981
).
47.
R.
Ahlrichs
,
Comput. Phys. Commun.
17
,
31
(
1979
).
48.
R.
Ahlrichs
,
P.
Scharf
, and
C.
Erhardt
,
J. Chem. Phys.
82
,
890
(
1985
).
49.
P. R.
Taylor
,
J. Chem. Phys.
74
,
1256
(
1981
).
50.
V.
Staemmler
and
R.
Jaquet
,
Theor. Chim. Acta
59
,
487
(
1981
);
V.
Staemmler
and
R.
Jaquet
,
Theor. Chim. Acta
59
,
501
(
1981
).
51.
H. P.
Kelly
and
A. M.
Sessler
,
Phys. Rev.
132
,
2091
(
1963
);
52.
W.
Kutzelnigg
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1977
).
53.
R.
Ahlrichs
and
P.
Scharf
, in
Ab Initio Methods in Quantum Chemistry
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), Vol.
1
, p.
501
.
54.
W.
Klopper
,
R.
Rohse
, and
W.
Kutzelnigg
,
Chem. Phys. Lett.
178
,
455
(
1991
).
55.
C.
Hampel
,
K. A.
Peterson
, and
H. J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
56.
F.
Wennmohs
and
F.
Neese
,
Chem. Phys.
343
,
217
(
2008
).
57.
R.
Fink
and
V.
Staemmler
,
Theor. Chim. Acta
87
,
129
(
1993
).
58.
W.
Meyer
,
W.
Jakubetz
, and
P.
Schuster
,
Chem. Phys. Lett.
21
,
97
(
1973
);
W.
Meyer
and
P.
Rosmus
,
J. Chem. Phys.
63
,
2356
(
1975
);
P.
Botschwina
and
W.
Meyer
,
Chem. Phys. Lett.
44
,
449
(
1976
);
P.
Botschwina
and
W.
Meyer
,
J. Chem. Phys.
67
,
2390
(
1977
);
P.
Botschwina
and
W.
Meyer
,
Chem. Phys.
20
,
43
(
1977
);
H. O.
Beckmann
,
J.
Koutecky
,
P.
Botschwina
, and
W.
Meyer
,
Chem. Phys. Lett.
67
,
119
(
1979
);
P.
Botschwina
,
P.
Rosmus
, and
E. A.
Reinsch
,
Chem. Phys. Lett.
102
,
299
(
1983
);
P.
Botschwina
,
Chem. Phys. Lett.
114
,
58
(
1985
);
P.
Botschwina
,
J. Mol. Spectrosc.
120
,
23
(
1986
);
P.
Botschwina
,
J. Mol. Spectrosc.
118
,
76
(
1986
);
P.
Botschwina
,
J. Mol. Spectrosc.
124
,
382
(
1986
).
59.
R.
Fink
and
V.
Staemmler
,
Theor. Chim. Acta
87
,
129
(
1993
).
60.
P.
Fulde
and
H.
Stoll
,
J. Chem. Phys.
97
,
4185
(
1992
).
61.
J. P.
Malrieu
,
J. P.
Daudey
, and
R.
Caballol
,
J. Chem. Phys.
101
,
8908
(
1994
);
J. P.
Daudey
,
J. L.
Heully
, and
J. P.
Malrieu
,
J. Chem. Phys.
99
,
1240
(
1993
).
62.
S.
Chattopadhyay
,
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
Chem. Phys. Lett.
357
,
426
(
2002
).
63.
M.
Nooijen
and
R. J.
Le Roy
,
J. Mol. Struct.: THEOCHEM
768
,
25
(
2006
).
64.
R.
Ahlrichs
and
F.
Driessler
,
Theor. Chim. Acta
36
,
275
(
1975
).
65.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
42
,
1119
(
1965
);
C.
Edmiston
,
J. Chem. Phys.
45
,
1833
(
1966
).
66.
W.
Kutzelnigg
and
R.
Ahlrichs
,
Ber. Bunsenges. Phys. Chem.
71
,
924
(
1967
);
W.
Kutzelnigg
and
R.
Ahlrichs
,
Theor. Chim. Acta
10
,
377
(
1968
).
67.
M.
Jungen
and
R.
Ahlrichs
,
Theor. Chim. Acta
17
,
339
(
1970
).
68.
W.
Meyer
,
J. Chem. Phys.
64
,
2901
(
1976
);
C. E.
Dykstra
,
H. F.
Schaefer
, and
W.
Meyer
,
J. Chem. Phys.
65
,
2740
(
1976
);
W.
Meyer
,
R.
Ahlrichs
, and
C. E.
Dykstra
, in
Advanced Theories and Computational Approaches to the Electronic Structure of Molecules
, edited by
C. E.
Dykstra
(
Kluwer Academic
,
Dordrecht
,
1984
), p.
19
.
69.
P.
Pulay
,
S.
Saebø
, and
W.
Meyer
,
J. Chem. Phys.
81
,
1901
(
1984
).
70.
H. -J.
Werner
, in
Ab Initio Methods in Quantum Chemistry
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), Vol.
2
.
71.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
,
Chem. Phys.
356
,
98
(
2009
).
72.
F.
Neese
, ORCA, an ab initio, density functional, and semiempirical program package, University of Bonn, Germany,
2008
.
73.
T.
Janowski
,
A. R.
Ford
, and
P.
Pulay
,
J. Chem. Theory Comput.
3
,
1368
(
2007
).
74.
R.
Ahlrichs
,
P.
Scharf
, and
K.
Jankowski
,
Chem. Phys.
98
,
381
(
1985
).
75.
M.
Schütz
,
R.
Lindh
, and
H. J.
Werner
,
Mol. Phys.
96
,
719
(
1999
).
76.
P. O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
77.
R.
Ahlrichs
and
W.
Kutzelnigg
,
J. Chem. Phys.
48
,
1819
(
1968
);
R. K.
Nesbet
,
Adv. Chem. Phys.
14
,
1
(
1969
);
O.
Sinanoglu
,
Adv. Chem. Phys.
14
,
237
(
1969
).
78.
P.
Pulay
,
S.
Saebø
, and
W.
Meyer
,
J. Chem. Phys.
81
,
1901
(
1984
).
79.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
80.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
81.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
82.
R.
Ahlrichs
 et al,
2007
, ftp.chemie.uni-karlsruhe.de/pub/basen (Universität Karlsruhe, Karlsruhe).
83.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
84.
M. A. D.
Boese
,
M. L.
Jan
, and
W. J.
Klopper
,
J. Phys. Chem. A
111
,
11122
(
2007
).
85.
S.
Grimme
,
C.
Diedrich
, and
M.
Korth
,
Angew. Chem., Int. Ed.
45
,
625
(
2006
).
86.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
034103
(
2008
).
87.
W.
Kutzelnigg
and
P.
von Herigonte
,
Adv. Quantum Chem.
36
,
185
(
2000
).
88.
P.
Pulay
, personal communication (17 September
2008
).
You do not currently have access to this content.