Kinetic studies were carried out to explore the role of the excited species I2(AΠ32u,AΠ31u), I2(X1,υ), and O2(a1Δ,υ) in the dissociation of I2 by singlet oxygen. A flow tube apparatus that utilized a chemical singlet oxygen generator was used to measure the I2 dissociation rate in O2(a1Δ)/I2 mixtures. Vibrationally excited I2(X) is thought to be a significant intermediate in the dissociation process. Excitation probabilities (γυ) for population of the υthI2(X) vibrational level in the reaction I2(X)+I(P21/2)I2(X,υ>10)+I(P23/2) were estimated based on a comparison of calculated populations with experimentally determined values. Satisfactory agreement with the experimental data [Barnault et al., J. Phys. IV1, C7647 (1991)] was achieved for total excitation probabilities partitioned in two ranges, such that Γ25υ47=υ=2547γυ0.1 and Γ15υ24=υ=1524γυ0.9. A multipathway I2 dissociation model was developed in which the intermediates are I2(AΠ32u,AΠ31u) and I2(X,υ). It was shown that the iodine dissociation process passes predominantly through the I2(AΠ32u,AΠ31u) intermediate. These states are populated by collisions of I2 with vibrationally excited O2(a1Δ,υ) at the initiation and the chain stages, when the mole fraction of I2 is small (ηI2<1%). For higher I2 concentrations (ηI21%) the excited states are populated in the chain stage by collisions of I2(X,15υ24) with O2(a1Δ).

1.
G. E.
Hall
,
S.
Arepalli
,
P. L.
Houston
, and
J. R.
Wiesenfeld
,
J. Chem. Phys.
82
,
2590
(
1985
).
2.
R. F.
Heidner
 III
,
C. E.
Gardner
,
G. I.
Segal
, and
T. M.
El-Sayed
,
J. Phys. Chem.
87
,
2348
(
1983
).
3.
M. C.
Heaven
,
Adv. Ser. Phys. Chem.
11
,
138
(
2001
).
4.
V. N.
Azyazov
and
M. C.
Heaven
,
AIAA J.
44
,
1593
(
2006
).
5.
M. C.
Heaven
,
A. V.
Komissarov
, and
V.
Goncharov
,
Proc. SPIE
4631
,
13
(
2002
).
6.
G. P.
Perram
,
Int. J. Chem. Kinet.
27
,
817
(
1995
).
7.
H. V.
Lilenfeld
, McDonnell Douglas Research Laboratories Report No. AFWL-TR-83–1,
1983
.
9.
M.
Nota
,
A. J.
Bouvier
,
R.
Bacis
,
A.
Bouvier
,
P.
Crozet
,
S.
Churassy
, and
J. B.
Koffend
,
J. Chem. Phys.
91
,
1938
(
1989
).
10.
M. H.
Van Benthem
and
J.
Davis Steven
,
J. Phys. Chem.
90
,
902
(
1986
).
11.
B.
Barnault
,
A. J.
Bouvier
,
D.
Pigache
, and
R.
Bacis
,
J. Phys. IV
1
,
C7
647
(
1991
).
12.
W. G.
Lawrence
,
T. A.
Van Marter
,
M. L.
Nowlin
, and
M. C.
Heaven
,
J. Chem. Phys.
106
,
127
(
1997
).
13.
J.
Han
,
A. V.
Komissarov
,
S. P.
Tinney
, and
M. C.
Heaven
,
Proc. SPIE
4971
,
45
(
2003
).
14.
M. C.
Heaven
,
J.
Han
,
S. J.
Davis
, and
S.
Lee
,
Proc. SPIE
5334
,
53
(
2004
).
15.
V. N.
Azyazov
,
V. S.
Safonov
, and
N. I.
Ufimtsev
,
Quantum Electron.
30
,
687
(
2000
).
16.
R. J.
Browne
and
E. A.
Ogryzlo
,
Proc. Chem. Soc., London
117
,
89
(
1964
).
17.
V. N.
Azyazov
,
V. D.
Nikolaev
,
M. I.
Svistun
, and
N. I.
Ufimtsev
,
Quantum Electron.
29
,
767
(
1999
).
18.
I. O.
Antonov
,
V. N.
Azyazov
,
S. Y.
Pichugin
, and
N. I.
Ufimtsev
,
Chem. Phys. Lett.
376
,
168
(
2003
).
19.
V. N.
Azyazov
,
P. A.
Mikheyev
,
N. I.
Ufimtsev
,
E. V.
Fomin
,
I. O.
Antonov
, and
M. C.
Heaven
,
J. Appl. Phys.
102
,
123108
(
2007
).
20.
A.
Katz
,
K.
Waichman
,
Z.
Dahan
,
V.
Rybalkin
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
Proc. SPIE
6735
,
673504
(
2007
).
21.
K.
Waichman
,
V.
Rybalkin
,
A.
Katz
,
Z.
Dahan
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
J. Appl. Phys.
102
,
013108
(
2007
).
22.
K.
Waichman
,
V.
Rybalkin
,
A.
Katz
,
Z.
Dahan
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
Proc. SPIE
6346
,
63462D
(
2007
).
23.
K.
Waichman
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
J. Appl. Phys.
104
,
013113
(
2008
).
24.
I. O.
Antonov
,
V. N.
Azyazov
, and
N. I.
Ufimtsev
,
J. Chem. Phys.
119
,
10638
(
2003
).
25.
N. F.
Balan
,
R. M.
Gizatullin
,
M. V.
Zagidullin
,
A. Y.
Kurov
,
V. D.
Nikolaev
,
V. M.
Pichkasov
, and
M. I.
Svistun
,
Sov. J. Quantum Electron.
19
,
1412
(
1989
).
26.
V.
Rybalkin
,
A.
Katz
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
Appl. Phys. Lett.
85
,
5851
(
2004
).
27.
M. V.
Zagidullin
,
V. D.
Nikolaev
,
M. I.
Svistun
,
N. A.
Khvatov
, and
G. D.
Hager
,
Appl. Phys. A: Mater. Sci. Process.
81
,
311
(
2005
).
28.
I. O.
Antonov
,
V. N.
Azyazov
,
A. V.
Mezhenin
,
G. N.
Popkov
, and
N. I.
Ufimtsev
,
Appl. Phys. Lett.
89
,
051115
(
2006
).
29.
V. N.
Azyazov
,
M. V.
Zagidullin
,
V. D.
Nikolaev
,
M. I.
Svistum
, and
N. A.
Khvatov
,
Quantum Electron.
24
,
120
(
1994
).
30.
S. M.
Newman
,
I. C.
Lane
, and
A. J.
Orr-Ewing
,
J. Chem. Phys.
110
,
10749
(
1999
).
31.
S. Y.
Pichugin
,
Quantum Electron.
38
,
736
(
2008
).
32.
V.
Rybalkin
,
A.
Katz
,
K.
Waichman
,
D.
Vingurt
,
Z.
Dahan
,
B. D.
Barmashenko
, and
S.
Rosenwaks
,
Appl. Phys. Lett.
89
,
021115
(
2006
).
33.
V. N.
Azyazov
,
M. C.
Heaven
, and
S. Y.
Pichugin
,
Proc. SPIE
6874
,
687408
(
2008
).
34.
J. B.
Tellinghuisen
and
L. F.
Phillips
,
J. Phys. Chem.
90
,
5108
(
1986
).
35.
A. V.
Komissarov
,
V.
Goncharov
, and
M. C.
Heaven
,
Proc. SPIE
4184
,
7
(
2001
).
36.
M.
Macler
,
J. P.
Nicolai
, and
M. C.
Heaven
,
J. Chem. Phys.
91
,
674
(
1989
).
37.
V. N.
Azyazov
,
I. O.
Antonov
,
S. Y.
Pichugin
, and
N. I.
Ufimtsev
,
Quantum Electron.
34
,
1116
(
2004
).
38.
V. N.
Azyazov
,
S. Y.
Pichugin
,
V. S.
Safonov
, and
N. I.
Ufimtsev
,
Quantum Electron.
31
,
794
(
2001
).
39.
M.
Lopez-Puertas
,
G.
Zaragoza
,
B. J.
Kerridge
, and
F. W.
Taylor
,
J. Geophys. Res.
100
,
9131
(
1995
).
40.
D. L.
Huestis
,
J. Phys. Chem. A
110
,
6638
(
2006
).
41.
C.
Coletti
and
G. D.
Billing
,
Chem. Phys. Lett.
356
,
14
(
2002
).
42.
K. S.
Kalogerakis
,
R. A.
Copeland
, and
T. G.
Slanger
,
J. Chem. Phys.
123
,
044309
(
2005
).
43.
T.
Ahn
,
A. T.
Adamovich
, and
W. R.
Lempert
,
Chem. Phys.
323
,
532
(
2006
).
44.
B. F.
Gordiets
,
A. I.
Osipov
, and
L. A.
Shelepin
,
Kinetic Processes in Gases and Molecular Lasers
(
Nauka
,
Moscow
,
1980
).
45.
B. D.
Barmashenko
and
S.
Rosenwaks
, private communication (11 April
2008
).
You do not currently have access to this content.