The ideas of the first and second papers in this series, which make it possible to interpret entropy data in terms of a physical picture, are applied to binary solutions, and equations are derived relating energy and volume changes when a solution is formed to the entropy change for the process. These equations are tested against data obtained by various authors on mixtures of normal liquids, and on solutions of non‐polar gases in normal solvents. Good general agreement is found, and it is concluded that in such solutions the physical picture of molecules moving in a ``normal'' manner in each others' force fields is adequate. As would be expected, permanent gases, when dissolved in normal liquids, loosen the forces on neighboring solvent molecules producing a solvent reaction which increases the partial molal entropy of the solute. Entropies of vaporization from aqueous solutions diverge strikingly from the normal behavior established for non‐aqueous solutions. The nature of the deviations found for non‐polar solutes in water, together with the large effect of temperature upon them, leads to the idea that the water forms frozen patches or microscopic icebergs around such solute molecules, the extent of the iceberg increasing with the size of the solute molecule. Such icebergs are apparently formed also about the non‐polar parts of the molecules of polar substances such as alcohols and amines dissolved in water, in agreement with Butler's observation that the increasing insolubility of large non‐polar molecules is an entropy effect. The entropies of hydration of ions are discussed from the same point of view, and the conclusion is reached that ions, to an extent which depends on their sizes and charges, may cause a breaking down of water structure as well as a freezing or saturation of the water nearest them. Various phenomena recorded in the literature are interpreted in these terms. The influence of temperature on certain salting‐out coefficients is interpreted in terms of entropy changes. It appears that the salting‐out phenomenon is at least partly a structural effect. It is suggested that structural influences modify the distribution of ions in an electrolyte solution, and reasons are given for postulating the existence of a super‐lattice structure in solutions of LaCl3 and of EuCl3. An example is given of a possible additional influence of structural factors upon reacting tendencies in aqueous solutions.

1.
H. S.
Frank
,
J. Chem. Phys.
13
,
478
,
493
(
1945
).
2.
I. M.
Barclay
and
J. A. V.
Butler
,
Trans. Faraday Soc.
34
,
1445
(
1938
).
3.
E.g.,
E. A.
Guggenheim
,
Proc. Roy. Soc. (London)
A148
,
304
(
1935
);
J.
Hirschfelder
,
D.
Stevenson
, and
H.
Eyring
,
J. Chem. Phys.
5
,
896
(
1937
).
4.
R. P.
Bell
,
Trans. Faraday Soc.
33
,
496
(
1937
).
5.
(a)
G.
Scatchard
,
S. E.
Wood
, and
J. M.
Mochel
,
J. Phys. Chem.
43
,
119
(
1939
).
(b)
G.
Scatchard
,
S. E.
Wood
, and
J. M.
Mochel
,
J. Am. Chem. Soc.
61
,
3206
(
1939
).
(c)
G.
Scatchard
,
S. E.
Wood
, and
J. M.
Mochel
,
J. Am. Chem. Soc.
,
62
,
712
(
1940
). ,
J. Am. Chem. Soc.
(d)
G.
Scatchard
and
C. L.
Raymond
,
J. Am. Chem. Soc.
60
,
1278
(
1938
). ,
J. Am. Chem. Soc.
(e)
J. R.
Lacher
and
R. E.
Hunt
,
J. Am. Chem. Soc.
63
,
1752
(
1941
). ,
J. Am. Chem. Soc.
(f)
J. R.
Lacher
,
W. B.
Buck
, and
W. H.
Parry
,
J. Am. Chem. Soc.
63
,
2422
(
1941
).,
J. Am. Chem. Soc.
6.
Cf., for example, J. E. Mayer and M. G. Mayer, Statistical Mechanics (New York, 1940), Chapter 6.
7.
G. N. Lewis and M. Randall, Thermodynamics (New York, 1923).
8.
J. H. Hildebrand, Solubility (New York, 1936), second edition.
9.
E.g., J. H. Hildebrand, reference 8, Chapter 2.
10.
J. H. Hildebrand, reference 8, p. 65.
11.
J. G.
Kirkwood
,
J. Phys. Chem.
43
,
97
(
1939
).
12.
E.g.,
G. S.
Rushbrooke
,
Proc. Roy. Soc., London
A166
,
296
(
1938
).
13.
J.
Horiuti
,
Sci. Pap. Inst. Phys. Chem. Res. Tokyo
17
,
125
(
1931
).
14.
M. G.
Evans
and
M.
Polanyi
,
Trans. Faraday Soc.
32
,
1333
(
1936
).
15.
A.
Lannung
,
J. Am. Chem. Soc.
52
,
68
(
1930
).
16.
E.
Lange
and
R.
Watzel
,
Zeits. f. Pysik. Chemie
A182
,
1
(
1938
).
17.
D. D.
Eley
,
Trans. Faraday Soc.
35
,
1281
(
1939
).
18.
J. A. V.
Butler
,
Trans. Faraday Soc.
33
,
229
(
1937
);
J. A. V. Butler and W. S. Reid, J. Chem. Soc. London, 1171 (1936).
19.
S.
Valentiner
,
Zeits. f. Physik
42
,
253
(
1927
).
20.
J.
Morgan
and
B. E.
Warren
,
J. Chem. Phys.
6
,
666
(
1938
).
21.
P. C.
Cross
,
J.
Burnham
, and
P. A.
Leighton
,
J. Am. Chem. Soc.
59
,
1134
(
1937
).
22.
R.
de. Forcrand
,
Comptes Rendus
135
,
950
(
1902
),
R.
de. Forcrand
,
176
,
355
(
1923
).,
Compt. Rend.
23.
E.g.,
E. G.
Hammerschmidt
,
Ind. Eng. Chem.
26
,
851
(
1934
).
24.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
25.
W. M.
Latimer
,
K. S.
Pitzer
, and
W. V.
Smith
,
J. Am. Chem. Soc.
60
,
1829
(
1938
).
26.
M. B. Young, Thesis, University of California, 1935.
27.
W. M.
Latimer
,
Chem. Rev.
18
,
349
(
1936
).
28.
D. D.
Eley
and
M. G.
Evans
,
Trans. Faraday Soc.
34
,
1093
(
1938
).
29.
E. C.
Bingham
,
J. Phys. Chem.
45
,
885
(
1941
).
30.
G.
Jones
and
M.
Dole
,
J. Am. Chem. Soc.
51
,
2950
(
1929
).
31.
See, for example, H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions (New York, 1943), Chapter 8, Section 4, for data and bibliography.
32.
F. D.
Rossini
,
Bur. Stand. J. Research
7
,
47
(
1931
).
33.
G. Tammann, Über die Beziehung Zwischen den inneren Kräften und Eigenschaften der Lösungen (Leipzig, 1907).
34.
Cf. the discussion of
Prins
(
J. Chem. Phys.
3
,
72
(
1935
)) of “hygroscopic” vs. “non‐hygroscopic” ions.
35.
P. Debye, Polare Molekeln (Leipzig, 1929).
36.
P.
Langevin
,
Ann. Chim. Phys.
8
,
70
(
1905
).
37.
Cf. J. E. Mayer and M. G. Mayer, reference 6, p. 217.
38.
H. S.
Frank
and
A. L.
Robinson
,
J. Chem. Phys.
8
,
933
(
1940
). See also literature there cited.
39.
S.
Freed
,
Rev. Mod. Phys.
14
,
105
(
1942
).
40.
W. M.
Latimer
and
C. M.
Slansky
,
J. Am. Chem. Soc.
62
,
2019
(
1940
).
41.
D. L.
Fowler
,
W. V.
Loebenstein
,
D. B.
Pall
, and
C. A.
Kraus
,
J. Am. Chem. Soc.
62
,
1140
(
1940
).
42.
M.
Randall
and
C. F.
Failey
,
Chem. Rev.
4
,
271
(
1927
).
43.
W.
Geffcken
,
Zeits. f. Pysik. Chemie
49
,
257
(
1904
).
44.
P.
Debye
and
J.
McAuley
,
Physik. Zeits.
26
,
23
(
1925
).
45.
A. R. Olson, private communication.
46.
A. R.
Olson
and
L. K. J.
Tong
,
J. Am. Chem. Soc.
66
,
1555
(
1944
).
47.
T.
Shedlovsky
and
D. A.
MacInnes
,
J. Am. Chem. Soc.
61
,
200
(
1939
).
48.
J. C.
Ghosh
,
J. Chem. Soc.
113
,
449
(
1918
).
49.
R. E.
Hall
and
W. D.
Harkins
,
J. Am. Chem. Soc.
38
,
2658
(
1916
).
50.
There is some indication that against the icebergs formed around Th++++, even NO3 may be unable to move freely. See Prins, reference 34.
51.
H. S.
Frank
,
J. Am. Chem. Soc.
63
,
1789
(
1941
).
52.
G.
Scatchard
and
S. S.
Prentiss
,
J. Am. Chem. Soc.
55
,
4355
(
1933
).
53.
G.
Karagunis
,
A.
Hawkinson
, and
G.
Damköhler
,
Zeits. f. Pysik. Chemie
A151
,
433
(
1930
).
54.
There may be here also a possibility of explaining the peculiar trends found by
J.
Lange
(
Zeits. f. Physik. Chemie
A168
,
147
(
1934
)) among the freezing points of solutions of tetraalkyl ammonium halides.
55.
M. Calvin, private communication.
56.
J. Bjerrum, Metal Ammine Formation in Aqueous Solutions (Copenhagen, 1941);
Chem. Abstr.
35
,
C
527
(
1941
).
57.
C. A. Kraus, The Properties of Electrically Conducting Systems (New York, 1922), p. 178.
This content is only available via PDF.
You do not currently have access to this content.