In the present communication, dielectric relaxation investigations on three interesting supercooled plastic crystalline substances, i.e., isocyanocyclohexane (ICNCH), cyanocyclohexane (CNCH), and 1-cyanoadamantane (CNADM) are reported. All of these have the main dipole moment situated in their side group– CN or– NC. Differential scanning calorimetry (DSC) was also employed as a supporting technique. Glassy crystal were easily formed in the first two samples by slowly cooling the plastic phase, but in CNADM it was formed by rapidly quenching the room temperature plastic phase. In addition to the so called α process that can reasonably be described by a Havriliak–Negami (HN) shape function, a secondary (or β) relaxation process is found in all the materials. The β process in CNADM has an activation energy (ΔEβ) of about 13.8±1kJmol, and is present even in the corresponding ordered crystalline phase, i.e., in its monoclinic phase. On the other hand, the magnitude of ΔEβ in both the isomers of cyanocyclohexane, i.e., ICNCH and CNCH, is similar and is about 21.1 and 23.4kJmol, respectively. Unlike CNADM, the cyclohexane derivatives are capable of exhibiting additional intramolecular process due to chair-chair conversion (i.e., in addition to the rotational motion of the side group– CN or– NC). Therefore, the secondary process of these systems is compared to that occuring in the binary liquid glass formed by dispersing a small quantity of these dipolar liquids in nearly nonpolar orthoterphenyl (OTP). Measurements were also made in the supercooled binary mixures of other cyclohexyl derivatives like cyclohexylchloride and cyclohexylbromide with OTP which lack a flexible side group. The sub-Tg relaxation process exhibited in all these cases have almost similar activation energy as in case of pure ICNCH and CNCH. These observations together with the fact that the activation energy for this process is much below that of chair-chair conversion which is about 43kJmol leads us to the conclusion that sub-Tg relaxation process in the binary mixtures is JG type, and perhaps β relaxation process in phase I of ICNCH and CNCH is also similar. With the help of semiemperical calculations of the dipolemoments for the axial and equitorial confirmers, it is concluded that the process associated with the chair-chair may not be dielectrically very active and, hence, should be relatively weaker in magnitude. The β process in CNADM has an activation energy (ΔEβ) of about 13.8±1kJmol, and is present even in the corresponding ordered crystalline phase indicating that it may not be characteristic of the glass formation of phase I. The molecular structure of CNADM is such that it does not possess other intramolecular degrees of freedom of the type equitorial to axial (or chair-chair) transformation. Our experimental finding that JG relaxation for CNADM dispersed in glassy OTP matrix is about 31kJmol, indicating that the well resolved sub-Tg process in CNADM is due to the small side group, i.e., CN and JG relaxation in phase I of CNADM is perhaps not resolvable or too small to be detected.

1.
The Plastically Crystalline State
, edited by
J. N.
Sherwood
(
Wiley/Interscience
,
New York
,
1979
).
2.
J. J.
Timmermans
,
J. Phys. Chem. Solids
18
,
1
(
1961
).
3.
H. M.
Huffman
,
S. S.
Todd
, and
G. D.
Oliver
,
J. Am. Chem. Soc.
71
,
584
(
1949
).
4.
K.
Adachi
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
45
,
1960
(
1972
).
5.
M.
Sorai
and
S.
Seki
,
Mol. Cryst. Liq. Cryst.
23
,
299
(
1973
).
6.
H.
Suga
and
S.
Seki
,
J. Non-Cryst. Solids
16
,
171
(
1974
).
7.
C. A.
Angell
,
L. E.
Busse
,
E. I.
Cooper
,
R. K.
Kadiyala
,
A.
Dworkin
,
M.
Ghelfenstein
,
H.
Szwarc
, and
A.
Vassal
,
J. Chim. Phys. Phys.-Chim. Biol.
82
,
267
(
1985
).
8.
G. P.
Johari
,
Ann. N.Y. Acad. Sci.
279
,
117
(
1976
).
9.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
10.
G.
Williams
,
Dielectric and Related Molecular Processes
, Special Periodical Report (
Chemical Society
,
London
,
1975
), Vol.
2
, p.
151
.
11.
K.
Pathmanathan
and
G. P.
Johari
,
J. Phys. C
18
,
6535
(
1985
).
12.
S.
Benkhof
,
A.
Kudlik
,
T.
Blockwicz
, and
E.
Rössler
,
J. Phys.: Condens. Matter
10
,
8155
(
1998
).
13.
M.
Tyagi
and
S. S. N.
Murthy
,
J. Chem. Phys.
114
,
3640
(
2001
).
14.
S. S. N.
Murthy
,
Thermochim. Acta
359
,
143
(
2000
).
15.
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
,
J. Chem. Phys.
116
,
10386
(
2002
).
16.
R.
Puertas
,
M. A.
Rute
,
J.
Salud
 et al.,
Phys. Rev. B
69
,
224202
(
2004
).
17.
O.
Yamamuro
,
M.
Ishikawa
,
I.
Kishimoto
,
J. J.
Pinvidic
, and
T.
Matsuo
,
J. Phys. Soc. Jpn.
68
,
2969
(
1999
).
18.
R.
Puertas
,
J.
Salud
,
D. O.
Lopez
,
M. A.
Rute
,
S.
Diez
,
J. L.
Tamarit
,
M.
Barrio
,
M. A.
Perez-Jubindo
,
M. R.
de la Fuente
, and
L. C.
Pardo
,
Chem. Phys. Lett.
401
,
368
(
2005
).
19.
Gangasharan
and
S. S. N.
Murthy
,
J. Chem. Phys.
99
,
9865
(
1993
).
20.
C.
Tschirwitz
,
S.
Benkhof
,
T.
Blochowicz
, and
E.
Rössler
,
J. Chem. Phys.
117
,
6281
(
2002
).
21.
M.
Stockhausen
and
S. V. Z.
Hornhardt
,
Z. Naturforsch., A: Phys. Sci.
47
,
1135
(
1992
).
22.
Md.
Shahin
and
S. S. N.
Murthy
,
J. Chem. Phys.
118
,
7495
(
2003
).
23.
Md.
Shahin
,
S. S. N.
Murthy
, and
L. P.
Singh
,
J. Phys. Chem. B
110
,
18573
(
2006
).
24.
L. P.
Singh
,
S. S. N.
Murthy
,
T.
Bräuniger
, and
H.
Zimmermann
,
J. Phys. Chem. B
112
,
1594
(
2008
).
25.
R.
Brand
,
P.
Lunkenheimer
,
U.
Schneider
, and
A.
Loidl
,
Phys. Rev. Lett.
82
,
1028
(
1999
).
26.
Md.
Shahin
and
S. S. N.
Murthy
,
J. Chem. Phys.
122
,
014507
(
2005
).
27.
A.
Mandanici
and
M.
Cutroni
,
J. Phys. Chem. B
111
,
10999
(
2007
).
28.
A.
Mandanici
,
W.
Huang
,
M.
Cutroni
, and
R.
Richert
,
J. Chem. Phys.
128
,
124505
(
2008
).
29.
J.
Karpovich
,
J. Chem. Phys.
22
,
1767
(
1954
).
30.
H. J.
Schneider
and
V.
Hoppen
,
J. Org. Chem.
43
,
3866
(
1978
).
31.
J. E.
Piercy
and
S. V.
Subrahmanyam
,
J. Chem. Phys.
42
,
4011
(
1965
).
32.
A.
Gonthier-Vassal
and
H.
Szwarc
,
Chem. Phys. Lett.
129
,
5
(
1986
).
33.
I.
Kishimoto
,
J. J.
Pinvidic
,
T.
Matsuo
, and
H.
Suga
,
Proc. Jpn. Acad., Ser. B: Phys. Biol. Sci.
67
,
66
(
1991
).
34.
H.
Suga
,
J. Mol. Liq.
65/66
,
115
(
1995
).
36.
Cited from Ref. 33, where the parameters are quoted from
J. J.
Pinvidic
, Ph.D. thesis,
Univ. de Paris Sud
,
1988
.
37.
J. P.
Amoureux
,
G.
Noyel
,
M.
Foulon
,
M.
Bee
, and
L.
Jorat
,
Mol. Phys.
52
,
161
(
1984
).
38.
S.
Havriliak
and
S.
Negami
,
J. Polym. Sci., Part C: Polym. Symp.
14
,
99
(
1966
).
39.
J.
Wong
and
C. A.
Angell
,
Glass Structure: By Spectroscopy
(
Dekker
,
New York
,
1976
).
40.
N. E.
Hill
,
W. E.
Vaughan
,
A. H.
Price
, and
M.
Davies
,
Dielectric Properties and Molecular Behaviour
(
Van Nostrand Reinhold
,
London
,
1969
).
41.
J. P.
Amoureux
,
M.
Castelain
,
M. D.
Benadda
,
M.
Bee
, and
J. L.
Sauvajol
,
J. Phys. (Paris)
44
,
513
(
1983
).
42.
A. H.
Fuchs
,
J.
Virlet
,
D.
Andre
, and
H.
Szwarc
,
J. Chim. Phys. Phys.-Chim. Biol.
82
,
293
(
1985
).
44.
J. F.
Willart
,
M.
Descamps
, and
J. C.
Van Mittenburg
,
Phase Transitions
76
,
239
(
2003
).
45.
L.
Carpentier
,
R.
Decressain
, and
M.
Descamps
,
J. Chem. Phys.
128
,
024702
(
2008
).
46.
C. A.
Angell
,
J. Non-Cryst. Solids
13
,
131
(
1991
).
47.
L. M.
Wang
and
C. A.
Angell
,
J. Chem. Phys.
118
,
10353
(
2003
).
48.
C. M.
Roland
and
K. L.
Ngai
,
Macromolecules
29
,
5747
(
1996
).
49.
P. G.
Santangelo
and
C. M.
Roland
,
Macromolecules
31
,
4581
(
1998
).
50.
D.
Huang
and
G. B.
McKenna
,
J. Chem. Phys.
114
,
5621
(
2001
).
51.
L.-M.
Wang
,
V.
Velikov
, and
C. A.
Angell
,
J. Chem. Phys.
117
,
10184
(
2002
).
52.
D. V.
Matyushov
and
C. A.
Angell
,
J. Chem. Phys.
123
,
034506
(
2005
).
53.
L.-M.
Wang
,
C. A.
Angell
, and
R.
Richert
,
J. Chem. Phys.
125
,
074505
(
2006
).
54.
J.
Salud
,
D. O.
Lopez
,
S.
Diez-Berart
,
M. A.
Perez-Jubindo
,
M. R.
de la Fuente
, and
M. A.
Rute
,
Chem. Phys. Lett.
446
,
71
(
2007
).
55.
S. S. N.
Murthy
and
M.
Tyagi
,
J. Chem. Phys.
117
,
3837
(
2002
).
56.
R. H.
Colby
,
Phys. Rev. E
61
,
1783
(
2000
).
57.
M.
Devies
and
J.
Swain
,
Trans. Faraday Soc.
67
,
1637
(
1971
).
58.
S. K.
Garg
and
C. P.
Smyth
,
J. Chem. Phys.
46
,
373
(
1967
).
59.
Krishnaji
and
A.
Mansingh
,
J. Chem. Phys.
41
,
827
(
1964
).
60.
Y.
Kondo
,
D.
Schoemaker
, and
F.
Lüty
,
Phys. Rev. B
19
,
4210
(
1979
).
61.
R. E.
Wasylishen
and
B.
Pettitt
,
Can. J. Chem.
57
,
1274
(
1979
).
62.
V. V.
Diky
,
G. J.
Kabo
,
A. A.
Kozyro
,
A. P.
Krasulin
, and
V. M.
Sevruk
,
J. Chem. Thermodyn.
26
,
1001
(
1994
).
63.
J.
Weiser
,
P. S.
Shenkin
, and
W. C.
Still
,
J. Comput. Chem.
20
,
221
(
1989
).
64.
U.
Kaatze
,
T. O.
Hushcha
, and
F.
Eggers
,
J. Solution Chem.
29
,
299
(
2000
).
65.
F. R.
Jensen
,
C. H.
Bushweller
, and
B. H.
Beck
,
J. Am. Chem. Soc.
91
,
344
(
1969
).
66.

The PM5 MOPAC orbital calculations for the gaseous phase of CHC yield the dipole moment (μ) to be 2.484 for e-form, whereas for the a-form the program does not converge. The reported μ of CHC is 2.092.12D.

67.

Cited from Ref. 33.

68.
O.
Exner
,
Dipole Moments in Organic Chemistry
, (
Georg Thieme
,
Stuttgart
,
1975
).
69.
A. L.
McClellan
,
Tables of Experimental Dipole Moments
(
W. H. Freeman & Co.
,
San Francisco
,
1963
).
You do not currently have access to this content.