X-ray emission spectroscopy (XES) at the OKα threshold has been used to investigate the electronic structure of a microporous pure calcined zeolite with the crystal structure of the MFI-type framework (silicalite), a deboronated MFI zeolite (DB-MFI), a pure mesoporous cubic MCM-48 material, a MCM-48 loaded with copper and zinc oxide nanoparticles (CuZnO-MCM-48), and a crystalline layered silicic acid H-RUB-18. For comparison, the XES OKα spectrum of pure α-quartz has also been recorded. In the nonresonant energy regime the XES OKα spectra for all these compounds look very similar indicating that the electronic structure of the micro- and mesoporous silica materials is very similar to that of quartz. In the resonant regime, however, the spectra exhibit significant differences. In all the materials under study, the resonant XES OKα spectra recorded at photon energies close to the positions of the OK edges show Raman-type inelastic peaks with an energy loss of 11eV, originating from electronic excitations within these insulating materials. The prominent features in the XES OKα spectra of α-quartz and H-RUB-18 are analyzed by means of quantum chemical ab initio cluster calculations.

1.
A.
Meisel
,
G.
Leonhardt
, and
R.
Szargan
,
X-Ray Spectra and Chemical Binding
,
Springer Series in Chemical Physics
Vol.
37
(
Springer-Verlag
,
Berlin
,
1989
).
2.
E. J.
Nordgren
,
S. M.
Butorin
,
L. C.
Duda
,
J. H.
Guo
, and
J.-E.
Rubensson
, in
Soft X-ray Fluorescence Spectroscopy for Materials Science and Chemical Physics
,
Advanced Series in Physical Chemistry
edited by
T.-K.
Sham
(
World Scientific
,
Singapore
,
2002
), Pt. II, p.
517
.
3.
S.
Hüfner
,
Photoelectron Spectroscopy: Principles and Applications
, 3rd ed. (
Springer-Verlag
,
Berlin
,
2003
).
4.
A.
Kotani
and
S.
Shin
,
Rev. Mod. Phys.
73
,
203
(
2001
).
5.
A.
Kotani
,
J. Electron Spectrosc. Relat. Phenom.
92
,
171
(
1998
).
6.
S.
Shin
,
A.
Agui
,
M.
Watanabe
,
M.
Fujisawa
,
Y.
Tezuka
, and
T.
Ishii
,
Phys. Rev. B
53
,
15660
(
1996
).
7.
S.
Shin
,
A.
Agui
, and
Y.
Harada
,
J. Synchrotron Radiat.
4
,
256
(
1997
).
8.
J. A.
Carlisle
,
E. L.
Shirley
,
L. J.
Terminello
,
J. J.
Jia
,
T. A.
Callcott
,
D. L.
Ederer
,
R. C. C.
Perera
, and
F. J.
Himpsel
,
Phys. Rev. B
59
,
7433
(
1999
).
9.
T.
Schmitt
, Ph.D. thesis,
Uppsala University
,
2004
.
10.
Zeolite Chemistry and Catalysis: ACS Monograph 171
, edited by
J. A.
Rabo
(
American Chemical Society
,
Washington, D.C.
,
1976
).
11.
Catalysis by Zeolites
, edited by
B.
Imelik
,
C.
Naccache
,
Y.
Ben Taarit
,
J. C.
Vedrine
,
G.
Coudurier
, and
H.
Praliaud
(
Elsevier Scientific
,
Amsterdam
,
1980
).
12.
C. A.
Fyfe
,
H.
Strobl
,
H.
Gies
, and
G. T.
Kokotailo
,
Can. J. Chem.
66
,
1942
(
1988
).
13.
T.
Yanagisawa
,
T.
Shimizu
,
K.
Kuroda
, and
C.
Kato
,
Bull. Chem. Soc. Jpn.
63
,
998
(
1990
);
T.
Yanagisawa
,
T.
Shimizu
,
K.
Kuroda
, and
C.
Kato
,
Bull. Chem. Soc. Jpn.
63
,
1535
(
1990
).
14.
J. S.
Beck
,
J. C.
Vartuli
,
W. J.
Roth
,
M. E.
Leonovicz
,
C. T.
Kresge
,
K. D.
Schmitt
,
C. T. W.
Chu
,
D. H.
Olson
,
E. W.
Sheppard
,
C. B.
McCullen
,
J. B.
Higgins
, and
J. L.
Schlenker
,
J. Am. Chem. Soc.
114
,
10834
(
1992
).
15.
A.
Corma
,
Chem. Rev. (Washington, D.C.)
97
,
2373
(
1997
).
16.
D.
Trong On
,
D.
Desplantier-Giscard
,
C.
Danumah
, and
S.
Kaliaguine
,
Appl. Catal., A
222
,
299
(
2001
).
17.
MFI as defined in
Ch.
Baerlocher
and
L. B.
McCusker
, Database of Zeolite Structures: http://www.iza-structure.org/databases/.
18.
H.
Gies
,
S.
Grabowski
,
M.
Bandyopadhyay
,
W.
Grünert
,
O. P.
Tkachenko
,
K. V.
Klementiev
, and
A.
Birkner
,
Microporous Mesoporous Mater.
60
,
31
(
2003
).
19.
M.
Borowski
,
B.
Marler
, and
H.
Gies
,
Z. Kristallogr.
217
,
233
(
2002
).
20.
O. P.
Tkachenko
,
K. V.
Klementiev
,
E.
Löffler
,
I.
Ritzkopf
,
F.
Schüth
,
M.
Bandyopadhyay
,
S.
Grabowski
,
H.
Gies
,
V.
Hagen
,
M.
Muhler
,
L.
Lu
,
R. A.
Fischer
, and
W.
Grünert
,
Phys. Chem. Chem. Phys.
5
,
4325
(
2003
).
21.
T.
Strunskus
,
O.
Fuchs
,
L.
Weinhardt
,
C.
Heske
,
M.
Guraya
,
M.
Muhler
,
V.
Staemmler
, and
C.
Wöll
,
J. Electron Spectrosc. Relat. Phenom.
134
,
183
(
2004
).
22.
V.
Staemmler
,
Topics Organomet. Chem.
12
,
219
(
2005
).
23.
R. W. G.
Wyckoff
,
Crystal Structures
(
Wiley-Interscience
,
New York
,
1965
), Vol.
1
, pp.
312
313
.
24.
V.
Staemmler
,
Theor. Chim. Acta
45
,
89
(
1977
);
J.
Wasilewski
,
Int. J. Quantum Chem.
36
,
503
(
1989
);
U.
Meier
and
V.
Staemmler
,
Theor. Chim. Acta
76
,
95
(
1989
);
R.
Fink
and
V.
Staemmler
,
Theor. Chim. Acta
87
,
129
(
1993
).
25.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
);
S.
Huzinaga
,
Approximate Atomic Functions
(
University of Alberta
,
Alberta
,
1971
).
26.
S. T.
Pantelides
and
W. A.
Harrison
,
Phys. Rev. B
13
,
2667
(
1976
).
27.
J. R.
Chelikowsky
and
M.
Schlüter
,
Phys. Rev. B
15
,
4020
(
1977
).
28.
R. B.
Laughlin
,
J. D.
Joannopoulos
, and
D. J.
Chadi
,
Phys. Rev. B
20
,
5228
(
1979
).
29.
R. N.
Nucho
and
A.
Madhukar
,
Phys. Rev. B
21
,
1576
(
1980
).
30.
E. P.
O’Reilly
and
J.
Robertson
,
Phys. Rev. B
27
,
27
(
1983
).
31.
R. P.
Gupta
,
Phys. Rev. B
32
,
8278
(
1985
).
32.
Y. P.
Li
and
W. Y.
Ching
,
Phys. Rev. B
31
,
2172
(
1985
).
33.
S. J.
Sferco
,
G.
Allan
,
I.
Lefebvre
,
M.
Lannoo
,
E.
Bergignat
, and
G.
Hollinger
,
Phys. Rev. B
42
,
11232
(
1990
).
34.
N.
Binggeli
,
N.
Troullier
,
J. L.
Martins
, and
J. R.
Chelikowsky
,
Phys. Rev. B
44
,
4771
(
1991
).
35.
Y.
Xu
and
W. Y.
Ching
,
Phys. Rev. B
44
,
11048
(
1991
).
36.
A.
Šimunek
,
J.
Vackář
, and
G.
Wiech
,
J. Phys.: Condens. Matter
5
,
867
(
1993
).
37.
Z. Y.
Wu
,
F.
Seifert
,
B.
Poe
, and
T.
Sharp
,
J. Phys.: Condens. Matter
8
,
3323
(
1996
).
38.
Z. Y.
Wu
,
F.
Jollet
, and
F.
Seifert
,
J. Phys.: Condens. Matter
10
,
8083
(
1998
).
39.
G.
Wiech
and
E. Z.
Kurmaev
,
J. Phys. C
18
,
4393
(
1985
).
40.
V. J.
Nithianandam
and
S. E.
Schnatterly
,
Phys. Rev. B
38
,
5547
(
1988
).
41.
W. L.
O’Brien
,
J.
Jia
,
Q.-Y.
Dong
,
T. A.
Callcott
,
J.-E.
Rubensson
,
D. R.
Mueller
, and
D. L.
Ederer
,
Phys. Rev. B
44
,
1013
(
1991
).
42.
W. L.
O’Brien
,
J.
Jia
,
Q.-Y.
Dong
,
T. A.
Callcott
,
K. E.
Miyano
,
D. L.
Ederer
,
D. R.
Mueller
, and
C.-C.
Kao
,
Phys. Rev. B
47
,
140
(
1993
).
43.
L. A. J.
Garvie
,
P.
Rez
,
J. R.
Alvarez
,
P. R.
Buseck
,
A. J.
Craven
, and
R.
Brydson
,
Am. Mineral.
85
,
732
(
2000
).
44.
B.
Gilbert
,
B. H.
Frazer
,
F.
Naab
,
J.
Fournelle
,
J. W.
Valley
, and
G.
De Stasio
,
Am. Mineral.
88
,
763
(
2003
).
45.
G.
Wiech
,
Solid State Commun.
52
,
807
(
1984
).
46.
T. H.
DiStefano
and
D. E.
Eastman
,
Phys. Rev. Lett.
27
,
1560
(
1971
).
47.
J. E.
Rowe
,
Appl. Phys. Lett.
25
,
576
(
1974
).
48.
H.
Ibach
and
J. E.
Rowe
,
Phys. Rev. B
10
,
710
(
1974
).
49.
B.
Fischer
,
R. A.
Pollak
,
T. H.
DiStefano
, and
W. D.
Grobman
,
Phys. Rev. B
15
,
3193
(
1977
).
50.
O. Y.
Khyzhun
,
Y. M.
Solonin
, and
V. D.
Dobrovolsky
,
J. Alloys Compd.
320
,
1
(
2001
).
51.
O. Y.
Khyzhun
,
T.
Strunskus
, and
Y. M.
Solonin
,
J. Alloys Compd.
366
,
54
(
2004
).
52.
R.
Evrard
and
A. N.
Trukhin
,
Phys. Rev. B
25
,
4102
(
1982
).
53.
K. E.
Miyano
,
D. L.
Ederer
,
T. A.
Callcott
,
W. L.
O’Brien
,
J. J.
Jia
,
L.
Zhou
,
Q.-Y.
Dong
,
Y.
Ma
,
J. C.
Woicik
, and
D. R.
Mueller
,
Phys. Rev. B
48
,
1918
(
1993
).
You do not currently have access to this content.