Correlated, multielectron dynamics of “open” electronic systems within the fixed-nuclei approximation are treated here within explicitly time-dependent configuration-interaction schemes. Specifically, we present simulations of laser-pulse driven excitations of selected electronic states of LiCN in the presence of energy and phase relaxation. The evolution of the system is studied using open-system density matrix theory, which embeds naturally in the time-dependent configuration-interaction singles (doubles) formalism. Different models for dissipation based on the Lindblad semigroup formalism are presented. These models give rise to lifetimes for energy relaxation ranging from a few hundreds of femtoseconds to several nanoseconds. Pure dephasing is treated using a Kossakowski-like Gaussian model, proceeding on similar time scales. The pulse lengths employed range from very short (tens of femtoseconds) to very long (several nanoseconds). To make long-time propagations tractable, the quasiresonant approximation is used. The results show that despite the loss of efficiency, selective dipole switching can still be achieved in the presence of dissipation when using appropriately designed laser pulses.

1.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
Mineola
,
1996
).
2.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
3.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
4.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
5.
S. K.
Ghosh
and
A. K.
Dhara
,
Phys. Rev. A
38
,
1149
(
1988
).
6.
M.
Di Ventra
and
R.
D’Agosta
,
Phys. Rev. Lett.
98
,
226403
(
2007
).
7.
M.
Di Ventra
and
R.
D’Agosta
, e-print arXiv:cond-mat/08053734.
8.
K. C.
Kulander
,
Phys. Rev. A
36
,
2726
(
1987
).
9.
T.
Klamroth
,
Phys. Rev. B
68
,
245421
(
2003
).
10.
M.
Nest
,
T.
Klamroth
, and
P.
Saalfrank
,
J. Chem. Phys.
122
,
124102
(
2005
).
11.
J.
Zanghellini
,
M.
Kitzler
,
C.
Fabian
,
T.
Brabec
, and
A.
Scrinzi
,
Laser Phys.
13
,
1064
(
2003
).
12.
T.
Kato
and
H.
Kono
,
Chem. Phys. Lett.
392
,
533
(
2004
).
13.
C.
Huber
and
T.
Klamroth
,
Appl. Phys. A: Mater. Sci. Process.
81
,
91
(
2004
).
14.
P.
Saalfrank
,
T.
Klamroth
,
C.
Huber
, and
P.
Krause
,
Isr. J. Chem.
45
,
205
(
2005
).
15.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
,
J. Chem. Phys.
123
,
074105
(
2005
).
16.
T.
Klamroth
,
J. Chem. Phys.
124
,
144310
(
2006
).
17.
S.
Klinkusch
,
T.
Klamroth
, and
P.
Saalfrank
(unpublished).
18.
A.
Thon
,
M.
Merschdorf
,
W.
Pfeiffer
,
T.
Klamroth
,
P.
Saalfrank
, and
D.
Diesing
,
Appl. Phys. A: Mater. Sci. Process.
78
,
189
(
2004
).
19.
H.
Schlegel
,
S.
Smith
, and
X.
Li
,
J. Phys. Chem.
126
,
244110
(
2007
).
20.
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
,
J. Math. Phys.
17
,
821
(
1976
).
21.
V.
Gorini
and
A.
Kossakowski
,
J. Math. Phys.
17
,
1298
(
1976
).
22.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
23.
R.
Kosloff
,
M.
Ratner
, and
W. B.
Davis
,
J. Chem. Phys.
106
,
7036
(
1997
).
24.
D. M.
Lockwood
,
M.
Ratner
, and
R.
Kosloff
,
Chem. Phys.
268
,
55
(
2001
).
25.
E. A.
Weiss
,
G.
Katz
,
R. H.
Goldsmith
,
M. R.
Wasielewski
,
M.
Ratner
,
R.
Kosloff
, and
A.
Nitzan
,
J. Chem. Phys.
124
,
074501
(
2006
).
26.
M.
Head-Gordon
,
R. J.
Rico
,
M.
Oumi
, and
T. J.
Lee
,
Chem. Phys. Lett.
219
,
21
(
1994
).
27.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, Jr.
,
J. Comput. Chem.
14
,
1347
(
1993
).
28.
Upon energy sorting, we find one more nondegenerate state at 0.263698Eh than in Ref. 15. The total number of states and their energies being the same, we attribute this difference to wrong energy ordering. The conclusions presented by the authors remain valid as they merely rely on energy ordering for state labeling. The states |7 and |8 in Ref. 15 thus corresponds to states |8 and |9 used here.
29.
K.
Blum
,
Density Matrix Theory and Applications
(
Plenum
,
New York
,
1996
).
30.
P.
Saalfrank
,
Chem. Rev. (Washington, D.C.)
106
,
4116
(
2006
).
31.
W. H.
Press
,
S. A. S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN 77 The Art of Scientific Programming
(
Cambridge University Press
,
Cambridge
,
1986
).
32.
J. C.
Tremblay
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
121
,
11535
(
2004
).
33.
B.
Brüggemann
,
T.
Pullerits
, and
V.
May
,
J. Photochem. Photobiol., A
190
,
372
(
2007
).
34.
M.
Quack
,
J. Chem. Phys.
69
,
1282
(
1978
).
35.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
,
J. Chem. Phys.
103
,
3998
(
1995
).
36.
B.
Wolfseder
,
L.
Seidner
,
G.
Stock
, and
W.
Domcke
,
Chem. Phys.
217
,
275
(
1997
).
37.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
,
J. Chem. Phys.
127
,
034107
(
2007
).
38.
Y.
Ohtsuki
,
K.
Nakagami
,
W.
Zhu
, and
H.
Rabitz
,
Chem. Phys.
287
,
197
(
2003
).
39.
S.
Beyvers
,
Y.
Ohtsuki
, and
P.
Saalfrank
,
J. Chem. Phys.
124
,
234706
(
2006
).
40.
H.
Petek
,
M.
Weida
,
H.
Nagano
, and
S.
Ogawa
,
Science
288
,
1402
(
2000
).
You do not currently have access to this content.