The second-order, two-electron Dyson propagator is derived using superoperator theory with a spin-adapted formulation. To include certain ladder diagrams to all orders, the shifted-denominator (SD2) approximation is made. Formal and computational comparisons with other approximations illustrate the advantages of the SD2 procedure. Vertical double ionization potentials (DIPs) for a set of closed-shell molecules are evaluated with the second-order propagator and the SD2 method. The results of the SD2 approximation are in good agreement with experiment. To systematically examine the quality of the results, we compared SD2 and equation-of-motion, coupled-cluster predictions. The average absolute discrepancy is 0.26eV for 36 doubly ionized states.

1.
R. W.
Shaw
, Jr.
,
J. S.
Jen
, and
T. D.
Thomas
,
J. Electron Spectrosc. Relat. Phenom.
11
,
91
(
1977
).
2.
H.
Siegbahn
,
L.
Asplund
, and
P.
Kelfve
,
Chem. Phys. Lett.
35
,
330
(
1975
).
3.
M.
Thompson
,
P. A.
Hewitt
, and
D. S.
Wooliscroft
,
Anal. Chem.
48
,
1336
(
1976
).
4.
R. R.
Rye
,
T. E.
Madey
,
J. E.
Houston
, and
P. H.
Holloway
,
J. Chem. Phys.
69
,
1504
(
1978
).
5.
W. E.
Moddeman
,
T. A.
Carlson
,
M. O.
Krause
,
B. P.
Pullen
,
W. E.
Bull
, and
G. K.
Schweitzer
,
J. Chem. Phys.
55
,
2317
(
1971
);
J. A.
Kelber
,
D. R.
Jennison
, and
R. R.
Rye
,
J. Chem. Phys.
75
,
652
(
1981
).
6.
N.
Correira
,
A.
Naves de Brito
,
M. P.
Keane
,
L.
Karlsson
,
S.
Svensson
,
C.-M.
Liegener
,
A.
Cesar
, and
H.
Ågren
,
J. Chem. Phys.
95
,
5187
(
1991
).
7.
M. L.
Langford
,
F. M.
Harris
,
P. G.
Fournier
, and
J.
Fournier
,
Int. J. Mass Spectrom. Ion Process.
116
,
53
(
1992
).
8.
P. J.
Richardson
,
J. H. D.
Eland
,
P. G.
Fournier
, and
D. L.
Cooper
,
J. Chem. Phys.
84
,
3189
(
1986
).
9.
J. C.
Severs
,
F. M.
Harris
,
S. R.
Andrews
, and
D. E.
Parry
,
Chem. Phys.
175
,
467
(
1993
).
10.
J. H. D.
Eland
,
S. D.
Price
,
J. C.
Cheney
,
P.
Lablanquie
,
I.
Nenner
, and
P. G.
Fournier
,
Philos. Trans. R. Soc. London, Ser. A
324
,
247
(
1988
).
11.
S. R.
Andrews
,
F. M.
Harris
, and
D. E.
Parry
,
Chem. Phys.
166
,
69
(
1992
).
12.
C.
Benoit
and
J. A.
Horsley
,
Mol. Phys.
30
,
557
(
1975
).
13.
W. J.
Griffiths
and
F. M.
Harris
,
Int. J. Mass Spectrom. Ion Process.
122
,
321
(
1992
).
14.
O.
Furuhashi
,
T.
Kinugawa
,
S.
Masuda
,
C.
Yamada
, and
S.
Ohtani
,
Chem. Phys. Lett.
337
,
97
(
2001
).
15.
G.
Dawber
,
A. G.
McConkey
,
L.
Avaldi
,
M. A.
MacDonald
,
G. C.
King
, and
R. I.
Hall
,
J. Phys. B
27
,
2191
(
1994
).
16.
M.
Hochlaf
and
J. H. D.
Eland
,
J. Chem. Phys.
123
,
164314
(
2005
).
17.
T. J.
Van Huis
,
S. S.
Wesolowski
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
110
,
11856
(
1999
).
18.
A.
Ben Houria
,
Z.
Ben Lakhdar
,
M.
Hochlaf
,
F.
Kemp
, and
I. R.
McNab
,
J. Chem. Phys.
122
,
54303
(
2005
).
19.
B. T.
Pickup
and
O.
Goscinski
,
Mol. Phys.
26
,
1013
(
1973
).
20.
L. S.
Cederbaum
and
W.
Domcke
,
Adv. Chem. Phys.
36
,
206
(
1977
).
21.
J.
Simons
,
Theor. Chem. Adv. Persp.
3
,
1
(
1978
).
22.
M. F.
Herman
,
K. F.
Freed
, and
D. L.
Yeager
,
Adv. Chem. Phys.
48
,
1
(
1981
).
23.
Y.
Öhrn
and
G.
Born
,
Adv. Quantum Chem.
13
,
1
(
1981
).
24.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
25.
P.
Jørgensen
and
J.
Simons
,
Second Quantization-Based Methods in Quantum Chemistry
(
Academic
,
New York
,
1981
).
26.
J.
Linderberg
and
Y.
Öhrn
,
Propagators in Quantum Chemistry
, 2nd ed. (
Wiley Interscience
,
Hoboken
,
2004
).
27.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
28.
J. V.
Ortiz
,
J. Chem. Phys.
108
,
1008
(
1998
).
29.
J. V.
Ortiz
,
Adv. Quantum Chem.
35
,
33
(
1999
).
30.
M.
Gell-Mann
and
F.
Low
,
Phys. Rev.
84
,
350
(
1951
).
31.
J. V.
Ortiz
,
J. Chem. Phys.
81
,
5873
(
1984
).
32.
R. L.
Graham
and
D. L.
Yeager
,
J. Chem. Phys.
94
,
2884
(
1991
).
33.
C.-M.
Liegener
,
J. Chem. Phys.
104
,
2940
(
1996
).
34.
Y.
Noguchi
,
Y.
Kudo
,
S.
Ishii
, and
K.
Ohno
,
J. Chem. Phys.
123
,
144112
(
2005
).
35.
Y.
Noguchi
,
S.
Ishii
, and
K.
Ohno
,
J. Chem. Phys.
125
,
114108
(
2006
).
36.
Y.
Noguchi
,
S.
Ishii
, and
K.
Ohno
,
J. Electron Spectrosc. Relat. Phenom.
156–158
,
155
(
2007
).
37.
J.
Schirmer
and
A.
Barth
,
Z. Phys. A
317
,
267
(
1984
).
38.
A.
Tarantelli
and
L. S.
Cederbaum
,
Phys. Rev. A
39
,
1639
(
1989
);
A.
Tarantelli
and
L. S.
Cederbaum
,
Phys. Rev. A
39
,
1656
(
1989
).
39.
A.
Tarantelli
and
L. S.
Cederbaum
,
Phys. Rev. A
49
,
3407
(
1994
).
40.
F.
Tarantelli
,
A.
Tarantelli
,
A.
Sgamellotti
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
117
,
577
(
1985
).
41.
F.
Tarantelli
,
A.
Tarantelli
,
A.
Sgamellotti
,
J.
Schirmer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
83
,
4683
(
1985
).
42.
E. M.-L.
Ohrendorf
,
F.
Tarrantelli
, and
L. S.
Cederbaum
,
J. Chem. Phys.
92
,
2984
(
1990
).
43.
E.
Ohrendorf
,
H.
Köppel
,
L. S.
Cederbaum
,
F.
Tarantelli
, and
A.
Sgamellotti
,
J. Chem. Phys.
91
,
1734
(
1989
).
44.
L. S.
Cederbaum
,
P.
Campos
,
F.
Tarantelli
, and
A.
Sgamellotti
,
J. Chem. Phys.
95
,
6634
(
1991
).
45.
D.
Minelli
,
F.
Tarantelli
,
A.
Sgamellotti
, and
L. S.
Cederbaum
,
J. Chem. Phys.
99
,
6688
(
1993
).
46.
A. B.
Trofimov
and
J.
Schirmer
,
J. Chem. Phys.
123
,
144115
(
2005
).
47.
P. O.
Löwdin
,
J. Chem. Phys.
97
,
7531
(
1950
).
49.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
50.
E. J.
Bylaska
,
W. A.
de Jong
,
K.
Kowalski
 et al., NWCHEM, A Computational Chemistry Package for Parallel Computers, Version 5.0 (
2006
),
Pacific Northwest National Laboratory
, Richland, Washington 99352-0999, USA. A modified version.
51.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
52.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
53.
H.
Sekino
and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
18
,
255
(
1984
);
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
);
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
);
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
54.
The EOM-CC approach is similar to symmetry adapted cluster method. [
H.
Nakatsuji
,
Chem. Phys. Lett.
39
,
562
(
1978
)].
You do not currently have access to this content.