The influences of active species Fe–Co composition on the growth of carbon nanotubes (CNTs) were systemically investigated. CNTs were grown from the pyrolytic decomposition of C2H2 over FeCo/CaCO3 catalysts by radio frequency chemical vapor deposition (CVD). The catalyst stoichiometry was found to strongly influence the carbon deposition rate as well as the nanotube crystallinity characteristics. Compared to the CNTs synthesized over the Co/CaCO3 catalyst, those produced by Fe-containing catalysts have less amorphous carbon. The maximum yield of high-quality CNTs was achieved at the Fe/Co atomic ratio of 2:1 due to a suitable concentration of benzene generated from acetylene CVD on such catalytic system. Fe and Co can form alloy and therefore the d-electron interaction between Fe and Co was believed to play an important role in the CNT growth.

1.
T.
Ando
,
Adv. Solid State Phys.
43
,
3
(
2003
).
2.
D.
Tasis
,
N.
Tagmatarchis
,
A.
Bianco
, and
M.
Prato
,
Chem. Rev. (Washington, D.C.)
106
,
1105
(
2006
).
3.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
R.
Saito
,
Carbon
33
,
883
(
1995
).
4.
S.
Porro
,
S.
Musso
,
M.
Giorcelli
,
A.
Chiodoni
, and
A.
Tagliaferro
,
Physica E (Amsterdam)
37
,
16
(
2007
).
5.
J. A.
Kong
,
A. M.
Cassell
, and
H.
Dai
,
Chem. Phys. Lett.
292
,
567
(
1998
).
6.
P.
Nikolaev
,
M. J.
Bronikowski
,
R. K.
Bradley
,
F.
Rohmund
,
D. T.
Colbert
,
K. A.
Smith
, and
R. E.
Smalley
,
Chem. Phys. Lett.
313
,
91
(
1999
).
7.
Z. H.
Li
,
M.
Wang
, and
Y.
Saito
,
Inorg. Mater.
42
,
605
(
2006
).
8.
J.
Kong
,
H. T.
Soh
,
A. M.
Cassell
,
C. F.
Quate
, and
H. J.
Dai
,
Nature (London)
395
,
878
(
1998
).
9.
A.
Kukovecz
,
Z.
Konya
,
N.
Nagaraju
,
I.
Wiullems
,
A.
Tamasi
,
A.
Fonseca
,
J. B.
Nagy
, and
I.
Kiricsi
,
Phys. Chem. Chem. Phys.
2
,
3071
(
2000
).
10.
V.
Ivanov
,
J. B.
Nagy
,
P.
Lambin
,
A.
Lucas
,
X. B.
Zhang
,
X. F.
Zhang
,
D.
Bernaerts
,
G.
Vantendeloo
,
S.
Amelinckx
, and
J.
Vanlanduyt
,
Chem. Phys. Lett.
223
,
329
(
1994
).
11.
R.
Brukh
and
S.
Mitra
,
Chem. Phys. Lett.
424
,
126
(
2006
).
12.
H.
Dai
,
A. G.
Rinzler
,
P.
Nikolaev
,
A.
Thess
,
D. T.
Colbert
, and
R. E.
Smalley
,
Chem. Phys. Lett.
260
,
471
(
1996
).
13.
M. C.
Bahome
,
L. L.
Jewell
,
D.
Hildebrandt
,
D.
Glasser
, and
N. J.
Coville
,
Appl. Catal., A
287
,
60
(
2005
).
14.
J.
Cheng
,
X.
Zhang
,
Z.
Luo
,
F.
Liu
,
Y.
Ye
,
W.
Yin
,
W.
Liu
, and
Y.
Han
,
Mater. Chem. Phys.
95
,
5
(
2006
).
15.
E.
Couteau
,
K.
Hernardi
,
J. W.
Seo
,
L.
Thiên-Nga
,
Cs.
Mikó
, and
R.
Gaál
,
Chem. Phys. Lett.
378
,
9
(
2003
).
16.
T.
Schmitt
,
A. S.
Biris
,
D.
Miller
,
A. R.
Biris
,
D.
Lupu
,
S.
Trigwell
, and
Z. U.
Rahman
,
Carbon
44
,
2032
(
2006
).
17.
A. R.
Biris
,
A. S.
Biris
,
D.
Lupu
,
S.
Trigwell
,
E.
Dervishi
,
Z.
Rahman
, and
P.
Marginean
,
Chem. Phys. Lett.
429
,
204
(
2006
).
18.
P.
Piedigrosso
,
Z.
Konya
,
J. F.
Colomer
,
A.
Fonseca
,
G.
Van Tendeloo
, and
J. B.
Nagy
,
Phys. Chem. Chem. Phys.
2
,
163
(
2000
).
19.
C. H.
Kiang
and
W. A.
Goddard
 III
,
Phys. Rev. Lett.
76
,
2515
(
1996
).
20.
T.
Guo
,
P.
Nikolaev
,
A.
Thess
,
D. T.
Colbert
, and
R. E.
Smalley
,
Chem. Phys. Lett.
243
,
49
(
1995
).
21.
A.
Magrez
,
J. W.
Seo
,
C.
Miko
,
K.
Hernadi
, and
L.
Forro
,
J. Phys. Chem. B
109
,
10087
(
2005
).
22.
E.
Dervishi
,
Z.
Li
,
A. R.
Biris
,
D.
Lupu
,
I. E.
Pavel
,
S.
Trigwell
, and
A. S.
Biris
,
Chem. Mater.
19
,
179
(
2007
).
23.
S.
Arepalli
,
P.
Nikolaev
,
O.
Gorelik
,
V. G.
Hadjiev
,
W.
Holmes
,
B.
Files
, and
L.
Yowell
,
Carbon
42
,
1783
(
2004
).
24.
R. A.
Afre
,
T.
Soga
,
T.
Jimbo
,
M.
Kumar
,
Y.
Ando
, and
M.
Sharon
,
Chem. Phys. Lett.
414
,
6
(
2005
).
25.
E. F.
Antunes
,
A. O.
Lobo
,
E. J.
Corat
,
V. J.
Trava-Airoldi
,
A. A.
Martin
, and
C.
Veríssimo
,
Carbon
44
,
2202
(
2006
).
26.
M. J.
Matthews
,
M. A.
Pimenta
,
G.
Dresselhaus
,
M. S.
Dresselhaus
, and
M.
Eendo
,
Phys. Rev. B
59
,
R6585
(
1999
).
27.
A.
Yoshida
,
Y.
Kaburagi
, and
Y.
Hishiyama
,
Carbon
44
,
2333
(
2006
).
28.
JCPDS Card No. 5-586.
29.
JCPDS Card No. 04-0777.
30.
N. R.
Franklin
and
H.
Dai
,
Adv. Mater. (Weinheim, Ger.)
12
,
890
(
2000
).
31.
A. S.
Biris
,
T. C.
Schmitt
,
R. B.
Little
,
Z.
Li
,
Y.
Xu
,
A. R.
Biris
,
D.
Lupu
,
E.
Dervishi
,
S.
Trigwell
,
D. W.
Miller
, and
Z.
Rahman
,
J. Phys. Chem. C
111
,
17970
(
2007
).
32.
C.
Guerret-Piécourt
,
Y.
Le Bouar
,
A.
Lolseau
, and
H.
Pascard
,
Nature (London)
372
,
761
(
1994
).
33.
R. B.
Little
, U.S. Patent No. 6,761,871 (
2001
).
34.
J. M.
MacLaren
,
T. C.
Schulthess
,
W. H.
Butler
,
R.
Sutton
, and
M.
McHenry
,
J. Appl. Phys.
85
,
4833
(
1999
).
35.
D.
Spišák
and
J.
Hafner
,
Phys. Rev. B
70
,
014430
(
2004
).
36.
R. B.
Little
,
J. Cluster Sci.
14
,
135
(
2003
).
37.
R. B.
Little
,
A. R.
Biris
,
D.
Lupu
,
Y.
Xu
,
Z.
Li
,
E.
Dervishic
, and
A. S.
Birisc
,
J. Magn. Magn. Mater.
320
,
540
(
2008
).
38.
B. S.
Tsukerblat
,
A. V.
Palii
,
V. Yu.
Mirovitskii
,
S. M.
Ostrovsky
,
K.
Turta
,
T.
Jovmir
,
S.
Shova
,
J.
Bartolome
,
M.
Evangelisti
, and
G.
Filoti
,
J. Chem. Phys.
115
,
9528
(
2001
).
You do not currently have access to this content.