The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered—namely, O3, CO, PN, and H2CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.

1.
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
Mol. Phys.
97
,
757
(
1999
).
2.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
119
,
3015
(
2003
).
3.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
121
,
5654
(
2004
).
4.
P. J.
Wilson
and
D. J.
Tozer
,
Chem. Phys. Lett.
337
,
341
(
2001
).
5.
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
,
J. Chem. Phys.
115
,
26
(
2001
).
6.
J.
Poater
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
118
,
8584
(
2003
).
7.
A. M.
Teale
and
D. J.
Tozer
,
Chem. Phys. Lett.
383
,
109
(
2004
).
8.
W.
Hieringer
,
F.
Della Sala
, and
A.
Görling
,
Chem. Phys. Lett.
383
,
115
(
2004
).
9.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
386
,
8
(
2004
).
10.
A. J.
Cohen
,
Q.
Wu
, and
W.
Yang
,
Chem. Phys. Lett.
399
,
84
(
2004
).
11.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
, and
D. J.
Tozer
,
J. Chem. Theory Comput.
2
,
827
(
2006
).
12.
A. M.
Teale
,
A. J.
Cohen
, and
D. J.
Tozer
,
J. Chem. Phys.
126
,
074101
(
2007
).
13.
L.
Pauling
,
J. Chem. Phys.
4
,
673
(
1936
).
15.
J. A.
Pople
,
J. Chem. Phys.
24
,
1111
(
1956
).
16.
J. A.
Elvidge
and
L. M.
Jackman
,
J. Chem. Soc.
1961
,
859
.
17.
P.
von Ragué Schleyer
,
C.
Maerker
,
A.
Dransfeld
,
H.
Jiao
, and
N. J. R.
van Eikema Hommes
,
J. Am. Chem. Soc.
118
,
6317
(
1996
).
18.
P.
Lazzeretti
,
Prog. Nucl. Magn. Reson. Spectrosc.
36
,
1
(
2000
).
19.
P. W.
Fowler
,
E.
Steiner
,
R. W. A.
Havenith
, and
L. W.
Jenneskens
,
Magn. Reson. Chem.
42
,
S68
(
2004
).
20.
J.
Juselius
,
D.
Sundholm
, and
J.
Gauss
,
J. Chem. Phys.
121
,
3952
(
2004
).
21.
A.
Soncini
,
J. Chem. Theory Comput.
3
,
2243
(
2007
).
22.
R. W. A.
Havenith
and
P. W.
Fowler
,
Chem. Phys. Lett.
449
,
347
(
2007
).
23.
P.
Lazzeretti
and
R.
Zanasi
, SYSMO package,
University of Modena
,
1980
; Additional routines by
P. W.
Fowler
,
E.
Steiner
,
R. W. A.
Havenith
, and
A.
Soncini
.
24.
T. A.
Keith
and
R. W. F.
Bader
,
Chem. Phys. Lett.
210
,
223
(
1993
).
25.
P.
Lazzeretti
,
M.
Malagoli
, and
R.
Zanasi
,
Chem. Phys. Lett.
220
,
299
(
1994
).
26.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
27.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
28.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
29.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
30.
W.
Yang
and
W.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
31.
Q.
Wu
and
W.
Yang
,
J. Theor. Comput. Chem.
2
,
627
(
2003
).
32.
DALTON, a molecular electronic structure program, release 2.0,
2005
, see http://www.kjemi.uio.no/software/dalton/dalton.html.
33.
E.
Fermi
and
E.
Amaldi
,
Acad. Ial. Rome
6
,
117
(
1934
).
34.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
35.
R. M.
Stevens
,
R. M.
Pitzer
, and
W. N.
Lipscomb
,
J. Chem. Phys.
38
,
550
(
1963
).
36.
R.
Zanasi
,
J. Chem. Phys.
105
,
1460
(
1996
).
37.
A.
Soncini
,
P.
Lazzeretti
, and
R.
Zanasi
,
Chem. Phys. Lett.
421
,
21
(
2006
).
38.
E.
Steiner
and
P. W.
Fowler
,
Chem. Commun. (Cambridge)
2001
,
2220
.
39.
E.
Steiner
and
P. W.
Fowler
,
J. Phys. Chem. A
105
,
9553
(
2001
).
40.
T.
Tanaka
and
Y.
Morino
,
J. Mol. Spectrosc.
33
,
538
(
1970
).
41.
N. C.
Handy
and
D. J.
Tozer
,
Mol. Phys.
94
,
707
(
1998
).
42.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
).
43.
F.
Pawłowski
,
P.
Jørgensen
,
J.
Olsen
,
F.
Hegelund
,
T.
Helgaker
,
J.
Gauss
, and
K. L.
Bak
,
J. Chem. Phys.
116
,
6482
(
2002
).
44.
J.
Pliva
,
J. W. C.
Johns
, and
L.
Goodman
,
J. Mol. Spectrosc.
148
,
427
(
1991
).
45.
T.
Helgaker
,
O. B.
Lutnæs
, and
M.
Jaszuński
,
J. Chem. Theory Comput.
3
,
86
(
2007
).
46.
A. M.
Teale
and
D. J.
Tozer
,
J. Chem. Phys.
122
,
034101
(
2005
).
47.
Q.
Wu
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
123
,
134111
(
2005
).
48.
S. G.
Kukolich
,
M. C.
McCarthy
, and
P.
Thaddeus
,
J. Phys. Chem. A
108
,
2645
(
2004
).
49.
A.
Soncini
,
R. G.
Viglione
,
R.
Zanasi
,
P. W.
Fowler
, and
L. W.
Jenneskens
,
C. R. Chim.
9
,
1085
(
2006
).
50.
P. G.
Wenthold
,
R. R.
Squires
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
120
,
5279
(
1998
).
51.
H.
Jiao
,
P.
von Ragué Schleyer
,
R.
Warmuth
,
K. N.
Houk
, and
B. R.
Beno
,
Angew. Chem., Int. Ed. Engl.
36
,
2761
(
1997
).
52.
F.
De Proft
,
P.
von Ragué Schleyer
,
J. H.
van Lenthe
,
F.
Stahl
, and
P.
Geerlings
,
Chem.-Eur. J.
8
,
3402
(
2002
).
53.
A. M.
Orendt
,
J. C.
Facelli
,
J. G.
Radiziszewski
,
W. J.
Horton
,
D. M.
Grant
, and
J.
Michl
,
J. Am. Chem. Soc.
118
,
846
(
1996
).
54.
R.
Warmuth
,
Angew. Chem., Int. Ed. Engl.
36
,
1347
(
1997
).
55.
M. E.
Harding
,
T.
Metzroth
,
J.
Gauss
, and
A. A.
Auer
,
J. Chem. Theory Comput.
4
,
64
(
2008
).
56.
A. K.
Jameson
and
C. J.
Jameson
,
Chem. Phys. Lett.
134
,
461
(
1987
).
57.
C. J.
Jameson
,
Nuclear Magnetic Resonance A
(A Specialist Report), edited by
G. A.
Webb
(
The Royal Society of Chemistry
,
Cambridge
,
1993
), pp.
55
89
(See Table 2, p. 63).
You do not currently have access to this content.