We present results on the percolation loci for chemical clusters and physical clusters of long lifespan. Chemical clusters are defined as sets of particles connected through particle-particle bonds that last for a given time τ. Physical clusters are sets of particles that remain close together at every instant for a given period of time τ. By using molecular dynamics simulations of a Lennard-Jones system we obtain the percolation loci at different values of τ as the lines in the temperature-density plane at which the system presents a spanning cluster in 50% of the configurations. We find that the percolation loci for chemical clusters shifts rapidly toward high densities as τ is increased. For moderate values of τ this line converges to the low-density branch of the liquid-solid coexistence curve. This implies that no stable chemical clusters can be found in the fluid phase. In contrast, the percolation loci for physical clusters tend to a limiting line, as τ tends to infinity, which is far from the liquid-solid transition line.

1.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
, 2nd ed. (
Taylor & Francis
,
London
,
1991
).
2.
B.
Senger
,
P.
Schaaf
,
D. S.
Corti
,
R.
Bowles
,
J. C.
Voegel
, and
H.
Reiss
,
J. Chem. Phys.
110
,
6421
(
1999
).
3.
F. W.
Starr
,
J. K.
Nielsen
, and
H. E.
Stanley
,
Phys. Rev. Lett.
82
,
2294
(
1999
).
4.
S. H.
Chen
,
J.
Rouch
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
6
,
10855
(
1994
).
5.
B. D.
Butler
,
H. J. M.
Hanley
,
D.
Hansen
, and
D. J.
Evans
,
Phys. Rev. Lett.
74
,
4468
(
1995
).
6.
R.
Arévalo
,
D.
Maza
, and
L. A.
Pugnaloni
,
Phys. Rev. E
74
,
021303
(
2006
).
7.
L. A.
Pugnaloni
and
G. C.
Barker
,
Physica A
337
,
428
(
2004
).
8.
T. L.
Hill
,
J. Chem. Phys.
23
,
617
(
1955
).
9.
J. E.
Mayer
,
J. Chem. Phys.
5
,
67
(
1937
).
10.
X.
Campi
,
H.
Krivine
, and
N.
Sator
,
Physica A
296
,
24
(
2001
).
11.
L. A.
Pugnaloni
,
I. F.
Márquez
, and
F.
Vericat
,
Physica A
321
,
398
(
2003
).
12.
F. H.
Stillinger
,
J. Chem. Phys.
38
,
1486
(
1963
).
13.
D. M.
Heyes
and
J. R.
Melrose
,
Mol. Phys.
66
,
1057
(
1989
).
14.
D. M.
Heyes
and
J. R.
Melrose
,
J. Phys. A
21
,
4075
(
1988
).
15.
L. A.
Pugnaloni
and
F.
Vericat
,
J. Chem. Phys.
116
,
1097
(
2002
).
16.
R.
Bahadur
and
R. B.
McClurg
,
J. Phys. Chem. B
105
,
11893
(
2001
).
17.
G. J.
Zarragoicoechea
,
L. A.
Pugnaloni
,
F.
Lado
,
E.
Lomba
, and
F.
Vericat
,
Phys. Rev. E
71
,
0312021
(
2005
).
18.
L. A.
Pugnaloni
, arXiv:cond-mat/0406713.
19.
F.
Sciortino
,
P. H.
Poole
,
H. E.
Stanley
, and
S.
Halvlin
,
Phys. Rev. Lett.
64
,
1686
(
1990
).
20.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
21.
N. A.
Seaton
and
E. D.
Glandt
,
J. Chem. Phys.
86
,
4668
(
1987
).
22.
L. B.
Partay
,
P.
Jedlovszky
,
I.
Brovchenko
, and
A.
Oleinikova
,
J. Phys. Chem. B
111
,
7603
(
2007
).
23.
L. A.
Pugnaloni
,
G. J.
Zarragoicoechea
, and
F.
Vericat
,
J. Chem. Phys.
125
,
194512
(
2006
).
24.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
25.
J. P.
Hansen
and
L.
Verlet
,
Phys. Rev.
184
,
151
(
1969
).
26.
J. P.
Hansen
,
Phys. Rev. A
2
,
221
(
1970
).
27.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
116
,
9352
(
2002
).
28.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
43
(
1995
).
29.
M.
Matsumoto
,
S.
Saito
, and
I.
Ohmine
,
Nature (London)
416
,
409
(
2002
).
30.
J.
Wedekind
and
D.
Reguera
,
J. Chem. Phys.
127
,
154516
(
2007
).
31.
P. R.
ten Wolde
and
D.
Frenkel
,
J. Chem. Phys.
109
,
9901
(
1998
).
You do not currently have access to this content.