Building on previous theoretical and spectroscopic studies of the pyrazolyl radical, a new three-state quasidiabatic Hamiltonian is reported which reproduces not only the equilibrium geometries and harmonic frequencies of the nominal X̃A22 state and low-lying ÃB12 excited state, but also the minimum energy points on the lowest two-state (X̃A22,ÃB12) and three-state (X̃A22,ÃB12,B̃B22) seams of conical intersection. The three-state Hamiltonian includes all terms through second order in both the diagonal and off-diagonal blocks. Its construction is accomplished in two steps. First, a nascent Hamiltonian, centered at the lowest energy two-state conical intersection, is determined using ab initio gradients and derivative couplings. Then, the nascent Hamiltonian is improved by optimizing selected contributions to the second-order coefficients to better reproduce relevant minima and harmonic frequencies. This Hamiltonian is then expressed in a basis tailored to describe the neutral states of interest under the multimode vibronic coupling approximation. The vibronic Hamiltonian is diagonalized to obtain negative ion photoelectron spectra for pyrazolide-h3 and the completely deuterated analog pyrazolide-d3. The resultant spectra, determined employing vibronic Hamiltonians as large as 500 million terms, compare favorably to recent theoretical and spectroscopic results for pyrazolyl-d3 and to spectroscopic results for pyrazolyl-h3, for which no reliable simulations had been available.

1.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
2.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
New Jersey
,
2004
), Vol.
15
, p.
323
.
3.
M.
Döscher
,
H.
Köppel
, and
P. G.
Szalay
,
J. Chem. Phys.
117
,
2645
(
2002
).
4.
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
768
(
2003
).
5.
S.
Mahapatra
,
V.
Vallet
,
C.
Woywod
,
H.
Köppel
, and
W.
Domcke
,
Chem. Phys.
304
,
17
(
2004
).
6.
A.
Hazra
and
M.
Nooijen
,
J. Chem. Phys.
122
,
204327
(
2005
).
7.
J.
Neugebauer
,
E. J.
Baerends
, and
M.
Nooijen
,
J. Phys. Chem. A
109
,
1168
(
2005
).
8.
A.
Motzke
,
Z.
Lan
,
C.
Woywod
, and
W.
Domcke
,
Chem. Phys.
329
,
50
(
2006
).
9.
J. F.
Stanton
,
J. Chem. Phys.
126
,
134309
(
2007
).
10.
A. J.
Gianola
,
T.
Ichino
,
S.
Kato
,
V. M.
Bierbaum
, and
W. C.
Lineberger
,
J. Phys. Chem. A
110
,
8457
(
2006
).
11.
T.
Ichino
,
A. J.
Gianola
,
W. C.
Lineberger
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
084312
(
2006
).
12.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
13.
G.
Worth
,
H.
Meyer
, and
L.
Cederbaum
,
J. Chem. Phys.
109
,
3518
(
1998
).
14.
X.
Chen
and
V. S.
Batista
,
J. Chem. Phys.
125
,
124313
(
2006
).
15.
M. S.
Schuurman
,
D. E.
Weinberg
, and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
104309
(
2007
).
16.
M. S.
Schuurman
and
D. R.
Yarkony
,
Chem. Phys.
347
,
57
(
2008
).
17.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
128
,
044119
(
2008
).
18.
A. V.
Marenich
and
J. E.
Boggs
,
J. Chem. Phys.
122
,
024308
(
2005
).
19.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
094104
(
2007
).
20.
A. J.
Gianola
,
T.
Ichino
,
R. L.
Hoenigman
,
S.
Kato
, and
V. M.
Bierbaum
,
J. Phys. Chem. A
108
,
10326
(
2004
).
21.
S. M.
Villano
,
A. J.
Gianola
,
N.
Eyet
,
T.
Ichino
,
S.
Kato
,
V. M.
Bierbaum
, and
W. C.
Lineberger
,
J. Phys. Chem. A
111
,
8579
(
2007
).
22.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
12428
(
2003
).
23.
R.
Englman
,
The Jahn-Teller Effect in Molecules and Crystals
(
Wiley-Interscience
,
New York
,
1972
).
24.
I. B.
Bersuker
,
The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry
(
Plenum
,
New York
,
1984
).
25.
M. J.
Bearpark
,
M. A.
Robb
, and
N.
Yamamoto
,
Spectrochim. Acta, Part A
55
,
639
(
1999
).
26.
B. E.
Applegate
,
T. A.
Miller
, and
T. A.
Barckholtz
,
J. Chem. Phys.
114
,
4855
(
2001
).
27.
B. E.
Applegate
,
A. J.
Bezant
, and
T. A.
Miller
,
J. Chem. Phys.
114
,
4869
(
2001
).
28.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
29.
D. R.
Yarkony
, in
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
), Vol.
15
, p.
41
.
30.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
31.
G.
Fogarasi
,
X.
Zhou
,
P. W.
Taylor
, and
P.
Pulay
,
J. Am. Chem. Soc.
114
,
8191
(
1992
).
32.
See EPAPS Document No. E-JCPSA6-129-645830 for supplementary tables S1-S13. For more information on EPAPS, see http://www.aip.org/epaps/numbering.html.
33.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
124
,
244103
(
2006
).
34.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
35.
M.
Dallos
,
H.
Lischka
,
P.
Szalay
,
R.
Shepard
, and
D. R.
Yarkony
,
J. Chem. Phys.
120
,
7330
(
2004
).
36.
T. A.
Barckholtz
and
T. A.
Miller
,
Int. Rev. Phys. Chem.
17
,
435
(
1998
).
37.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
49
,
33
(
1952
).
38.
W.
Domcke
,
H.
Köppel
, and
L.
Cederbaum
,
Mol. Phys.
43
,
851
(
1981
).
39.
H.
Simon
,
Math. Comput.
42
,
115
(
1984
).
40.
J.
Cullum
and
R.
Willoughby
,
Lanczos ALgorithms for Large Symmetric EIgenvalue Problems
(
Birkhauser
,
Boston
,
1985
).
41.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
56
,
1
(
1975
).
42.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Man’ko
,
J. Mol. Spectrosc.
64
,
302
(
1977
).
43.
H.
Kupka
and
P. H.
Cribb
,
J. Chem. Phys.
85
,
1303
(
1986
).
44.
D. J.
Tannor
and
E. J.
Heller
,
J. Chem. Phys.
77
,
202
(
1982
).
45.
A.
Hazra
and
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
643
(
2003
).
46.
M. R.
Manaa
and
D. R.
Yarkony
,
J. Chem. Phys.
99
,
5251
(
1993
).
47.
J.
Paldus
, in
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
48.
I.
Shavitt
, in
The Unitary Group for the Evaluation of Electronic Energy Matrix Elements
, edited by
J.
Hinze
(
Springer-Verlag
,
Berlin
,
1981
).
49.
I.
Shavitt
, in
Mathematical Frontiers in Computational Chemical Physics
, edited by
D. G.
Truhlar
(
Springer
,
New York
,
1988
).
50.
T. H.
Dunning
and
P. J.
Hay
, in
Method of Electronic Structure Theory
, edited by
H. F. S.
 III
(
Plenum
,
New York
,
1977
), Vol.
2
.
51.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Alhrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Erhard
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
V.
Parasuk
,
M.
Pepper
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
, and
J.-G.
Zhao
, COLUMBUS, an ab initio electronic structure program,
2003
.

Supplementary Material

You do not currently have access to this content.