The specific heat of a liquid varies as its structure and molecular vibrational frequencies vary with the temperature. We report the magnitude of the structural or configurational part Cp,conf for five molecular liquids by measuring their dynamic and the apparent specific heats, and find that the unrelaxed or vibrational specific heat, of the equilibrium liquid, is not greatly different from that of the nonequilibrium glass. Therefore, the vibrational part of the specific heat Cp,vib does not change substantially when a glass becomes an ultraviscous liquid. This contradicts the inference that there is a large sigmoid-shape (discontinuous) increase in Cp,vib as the structure of a glass kinetically unfreezes on heating above its Tg, and further that Cp,conf is 20%–50% of the net Cp change at the glass transition.

1.
J. D.
Bernal
,
Trans. Faraday Soc.
33
,
37
(
1937
).
2.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
3.
See, for detailed discussion,
E.
Donth
,
The Glass Transition, Relaxation Dynamics in Liquids and Disordered Materials
(
Springer
,
Berlin
,
2001
).
4.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
 et al.,
Ann. N.Y. Acad. Sci.
279
,
15
(
1976
).
5.
I. M.
Hodge
,
J. Non-Cryst. Solids
169
,
211
(
1994
).
6.
J. M.
O’Reilly
,
CRC Crit. Rev. Solid State Mater. Sci.
13
,
227
(
1987
).
7.
G. P.
Johari
,
J. Non-Cryst. Solids
307–310
,
387
(
2002
).
8.
G. P.
Johari
,
J. Chem. Phys.
116
,
2043
(
2002
).
9.
M.
Goldstein
,
Phys. Rev. B
71
,
136201
(
2005
).
10.
A.
Zürcher
and
T.
Keyes
,
Phys. Rev. E
55
,
6917
(
1997
).
11.
G.
Diezemann
,
U.
Mohanty
, and
I.
Oppenheim
,
Phys. Rev. E
59
,
2067
(
1999
).
12.
U.
Buchenau
,
J. Phys.: Condens. Matter
15
,
S995
(
2003
).
13.
S.
Büchner
and
A.
Heuer
,
Phys. Rev. B
60
,
6507
(
1999
).
14.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
15.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
16.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
17.
F.
Sciortino
,
J. Stat. Mech.: Theory Exp.
2005
,
050515
.
18.
N. O.
Birge
and
S.
Nagel
,
Phys. Rev. Lett.
54
,
2674
(
1985
).
[PubMed]
A technique in which a single frequency was used was developed independently by Christensen. See
T.
Christensen
,
J. Phys. (Paris), Colloq.
46
,
C8
635
(
1985
).
19.
N. O.
Birge
,
Phys. Rev. B
34
,
1631
(
1986
).
20.
I.-K.
Moon
and
Y.-H.
Jeong
,
Phys. Rev. B
52
,
6381
(
1995
).
See also,
I.-K.
Moon
and
Y.-H.
Jeong
,
Pure Appl. Chem.
69
,
2321
(
1997
).
21.
N.
Menon
,
J. Chem. Phys.
105
,
5246
(
1996
).
22.
C. A.
Angell
,
L. M.
Wang
,
S.
Mossa
,
Y.
Yue
, and
J. R. D.
Copley
, in
Slow Dynamics in Complex Systems
,
Third International Symposium
, edited by
M.
Tokuyama
and
I.
Oppenheim
[
AIP Conf. Proc.
708
,
473
(
2004
)]. The ratio Cp,confΔCp has been occasionally confused with Cp,confCp,exc, by using ΔCp in place of Cp,exc, where Cp,exc is either taken as the difference between the supercooled liquid’s Cp and extrapolated Cp,glass or taken as the difference between the liquid’s Cp and measured Cp of the crystal state.
23.
G. P.
Johari
,
J. Chem. Phys.
126
,
114901
(
2007
).
24.
L.-M.
Wang
and
R.
Richert
,
Phys. Rev. Lett.
99
,
185701
(
2007
).
25.

Acetaminophen [N-(4-hydroxyphenyl)acetamide, mol wt. 151.17] is an analgesic and antipyretic drug, griseofulvin [(2S,6R)-7-chloro-2,4,6-trimethoxy-6-methyl-3H, 4H-spiro[1-benzofuran-2,1-cyclohex[2]ene]-3,4-dione; mol wt. 352.77], an antifungal drug, and nifedipine (dimethyl 2,6-dimethyl-4-(2-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate; mol wt. 346.34), an angina pectoris, and hypertension drug. The pharmaceutical value of these substances is incidental to our purpose here.

26.
A.
Boller
,
C.
Schick
, and
B.
Wunderlich
,
Thermochim. Acta
266
,
97
(
1995
)..
See also papers in Special issues on Calorimetry in
A.
Boller
,
C.
Schick
, and
B.
Wunderlich
,
Thermochim. Acta
304–305
, (
1997
)
and
A.
Boller
,
C.
Schick
, and
B.
Wunderlich
,
Thermochim. Acta
377
(
2001
).
27.
J. E. K.
Schawe
,
Thermochim. Acta
361
,
97
(
2000
).
28.
A.
Toda
,
T.
Arita
, and
M.
Hikosaka
,
J. Therm Anal. Calorim.
60
,
821
(
2000
).
29.
S.
Weyer
,
M.
Merzlyakov
, and
C.
Shick
,
Thermochim. Acta
377
,
85
(
2001
).
30.
S. L.
Simon
,
Thermochim. Acta
374
,
55
(
2001
).
31.
S.
Weyer
,
H.
Huth
, and
C.
Schick
,
Polymer
46
,
12240
(
2005
).
32.
G.
Salvetti
,
C.
Cardelli
,
C.
Ferrari
, and
E.
Tombari
,
Thermochim. Acta
364
,
11
(
2000
).
33.
G.
Salvetti
,
E.
Tombari
,
L.
Mikheeva
, and
G. P.
Johari
,
J. Phys. Chem. B
106
,
6081
(
2002
).
34.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
126
,
021107
(
2007
).
35.
E.
Tombari
,
S.
Presto
,
G. P.
Johari
, and
R. M.
Shanker
,
J. Pharm. Sci.
95
,
1006
(
2006
).
36.
E.
Tombari
,
G.
Salvetti
,
C.
Ferrari
, and
G. P.
Johari
,
J. Phys. Chem. B
111
,
496
(
2007
).
37.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
126
,
024903
(
2007
).
38.
T.
Christensen
,
N. B.
Olsen
, and
J. C.
Dyre
,
Phys. Rev. E
75
,
041502
(
2007
).
39.
T.
Christensen
and
J. C.
Dyre
, “
Solution of the spherically symmetric linear thermoviscoelastic problem in the inertia free limit
,”
Phys. Rev. E
(in press).
40.
S.
Takahara
,
O.
Yamamuro
, and
H.
Suga
,
J. Non-Cryst. Solids
171
,
259
(
1994
).
41.
H.
Leyser
,
A.
Schulte
,
W.
Doster
, and
W.
Petry
,
Phys. Rev. E
51
,
5899
(
1995
).
42.
E.
Tombari
,
C.
Ziparo
,
G.
Salvetti
, and
G. P.
Johari
,
J. Chem. Phys.
127
,
014905
(
2007
).
43.
M.
Pyda
and
B.
Wunderlich
,
Macromolecules
38
,
10472
(
2005
).
44.
M.
Pyda
,
Macromolecules
35
,
4009
(
2002
).
45.
M.
Pyda
,
J. Polym. Sci., Part B: Polym. Phys.
39
,
3038
(
2001
).
46.
A. V.
Granato
,
J. Non-Cryst. Solids
307–310
,
376
(
2002
).
47.
E.
Tombari
,
C.
Ferrari
,
G.
Salvetti
, and
G. P.
Johari
,
Phys. Rev. B
77
,
024304
(
2008
).
48.
M.
Goldstein
,
J. Chem. Phys.
64
,
4767
(
1976
).
49.
G. P.
Johari
,
Philos. Mag. B
41
,
41
(
1980
).
50.
G. P.
Johari
,
J. Chem. Phys.
112
,
7518
(
2000
), see Eq. (7).
51.
J. G.
Shim
and
G. P.
Johari
,
Philos. Mag. B
79
,
5654
(
1999
).
52.
J. G.
Shim
and
G. P.
Johari
,
J. Non-Cryst. Solids
61
,
52
(
2000
).
53.
L.-M.
Martinez
and
C. A.
Angell
,
Nature (London)
410
,
663
(
2001
).
54.
W.
Oldekop
,
Glastech. Ber.
30
,
8
(
1957
).
55.
W. A.
Phillips
,
U.
Buchenau
,
N.
Nucker
,
A.-J.
Dianoux
, and
W.
Petry
,
Phys. Rev. Lett.
63
,
2381
(
1989
).
56.
G. P.
Johari
,
Philos. Mag.
35
,
1077
(
1977
).
57.
C. K.
Majumdar
,
Solid State Commun.
9
,
1087
(
1971
).
58.
A.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
(
1999
).
59.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
60.
G. P.
Johari
,
J. Chem. Phys.
58
,
1766
(
1973
).
61.
G. P.
Johari
,
J. Non-Cryst. Solids
307–310
,
317
(
2002
).
62.
K. L.
Ngai
and
M.
Paluch
,
J. Chem. Phys.
120
,
857
(
2004
).
63.
K.
Kishimoto
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
46
,
3020
(
1973
).
64.
H.
Fujimori
and
M.
Oguni
,
J. Chem. Thermodyn.
26
,
367
(
1994
).
65.
H.
Fujimori
,
M.
Muzikami
, and
M.
Oguni
,
J. Non-Cryst. Solids
204
,
38
(
1996
).
66.
J.
Haddad
and
M.
Goldstein
,
J. Non-Cryst. Solids
30
,
1
(
1978
).
67.
G. P.
Johari
,
J. Chem. Phys.
77
,
4619
(
1982
).
68.
H.
Wagner
and
R.
Richert
,
J. Phys. Chem.
103
,
4071
(
1999
).
69.
E.
Tombari
,
C.
Ferrari
,
G. P.
Johari
, and
R. M.
Shanker
, “
Calorimetric relaxation in molecular pharmaceutical glasses and its utility in understanding their stability against crystallization
,”
J. Phys. Chem. B
(in press).
You do not currently have access to this content.