We consider the lattice Domb–Joyce model at a value of the coupling for which scaling corrections approximately vanish and determine the universal scaling functions associated with the osmotic pressure and the polymer size for semidilute polymer solutions (c/c10, where c is the concentration of the solution and c is the overlap concentration) in good-solvent conditions. Our result for the osmotic pressure agrees with previous renormalization-group calculations (the relative difference is less than 1%) but differs significantly from previous numerical determinations in which polymers were modeled as lattice self-avoiding walks. We show that for c/c6 simulations of lattice self-avoiding walks give results that are affected by strong scaling corrections even for chain lengths as large as 1000: The self-avoiding walk model is therefore unsuitable for the determination of universal properties of polymer solutions deep in the semidilute regime.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
2.
P. G.
de Gennes
,
Phys. Lett.
38A
,
339
(
1972
).
3.
K. F.
Freed
,
Renormalization Group Theory of Macromolecules
(
Wiley
,
New York
,
1987
).
4.
L.
Schäfer
,
Excluded Volume Effects in Polymer Solutions
(
Springer-Verlag
,
Berlin
,
1999
).
5.
P.
Belohorec
and
B. G.
Nickel
, “
Accurate universal and two-parameter model results from a Monte-Carlo renormalization group study
,”
Guelph University
Report,
1997
(unpublished).
6.
S.
Caracciolo
,
B. M.
Mognetti
, and
A.
Pelissetto
,
J. Chem. Phys.
125
,
094903
(
2006
).
7.
At present the most accurate estimates of ν are ν=0.58758±0.00007 (Ref. 5), ν=0.5874±0.0002 [
T.
Prellberg
,
J. Phys. A
34
,
L599
(
2001
)];
ν=0.58765±0.00020 [
H. -P.
Hsu
,
W.
Nadler
, and
P.
Grassberger
,
Macromolecules
37
,
4658
(
2004
)];
ν=0.5876±0.0002 [
A.
Pelissetto
and
E.
Vicari
,
J. Phys. A
40
,
F539
(
2007
)];
ν=0.5876±0.0002 [
N.
Clisby
,
R.
Liang
, and
G.
Slade
,
J. Phys. A
40
,
10973
(
2007
)] (assuming 0.50θ0.53);
For an extensive list of older results, see
A.
Pelissetto
and
E.
Vicari
,
Phys. Rep.
368
,
549
(
2002
).
8.
S.
Caracciolo
,
B. M.
Mognetti
, and
A.
Pelissetto
,
J. Chem. Phys.
125
,
094904
(
2006
);
[PubMed]
S.
Caracciolo
,
B. M.
Mognetti
, and
A.
Pelissetto
,
J. Chem. Phys.
126
,
169901
(
2007
) (erratum).
9.
S.
Caracciolo
,
B. M.
Mognetti
, and
A.
Pelissetto
,
J. Chem. Phys.
128
,
065104
(
2008
).
10.
B.
Li
,
N.
Madras
, and
A. D.
Sokal
,
J. Stat. Phys.
80
,
661
(
1995
).
11.
C.
Domb
and
G. S.
Joyce
,
J. Phys. C
5
,
956
(
1972
).
12.
A.
Pelissetto
and
J. -P.
Hansen
,
J. Chem. Phys.
122
,
134904
(
2005
).
13.
R.
Dickman
,
J. Chem. Phys.
87
,
2246
(
1987
).
14.
C. I.
Addison
,
A. A.
Louis
, and
J. P.
Hansen
,
J. Chem. Phys.
121
,
612
(
2004
).
15.
C. I.
Addison
,
J. P.
Hansen
, and
A. A.
Louis
,
ChemPhysChem
6
,
1760
(
2005
).
16.
J. -P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic
,
New York
,
2006
).
17.
The residual error on K can be estimated by assuming Kest(M)=K+a/M4. It follows ΔKest(M)Kest(2M)=15a/(2M)4, so that Kest(2M)K=Δ/15. In the two cases we show, the expected systematic error on the value corresponding to M=128 is therefore much smaller than the statistical error.
18.
G.
Merkle
,
W.
Burchard
,
P.
Lutz
,
K. F.
Freed
, and
J.
Gao
,
Macromolecules
26
,
2736
(
1993
).
19.
The results of Ref. 18 are expressed in terms of a variable X such that fZ(X)=1+X+O(X2) for X0. The variable X is related to Φ by X=1.313Φ [see Eq. (5)].
20.
Equation (17.52) of Ref. 4 gives the following expression for Z: Z=1+1.314Φ(H1/H2)0.309, H1=1+2.15Φ+1.00Φ2, and H2=1+0.51Φ. The variable ŝ used in Ref. 4 is related to Φ by Φ=1.169ŝ (see Sec. 13.3.2). For Φ it predicts Z1.618Φ1.309.
21.
I.
Noda
,
N.
Kato
,
T.
Kitano
, and
M.
Nasagawa
,
Macromolecules
14
,
668
(
1981
).
22.
T.
Ohta
and
A.
Nakanishi
,
J. Phys. A
16
,
4155
(
1983
).
23.
K. F.
Freed
,
J. Chem. Phys.
79
,
6357
(
1983
).
24.
L.
Schäfer
,
Macromolecules
17
,
1357
(
1984
).
26.
B.
MacDonald
,
N.
Jan
,
D. L.
Hunter
, and
M. O.
Steinitz
,
J. Phys. A
18
,
2627
(
1985
).
27.
N.
Madras
and
A. D.
Sokal
,
J. Stat. Phys.
50
,
109
(
1988
).
28.
A. D.
Sokal
, in
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
, edited by
K.
Binder
(
Oxford University Press
,
Oxford
,
1995
).
29.
M. S.
Causo
,
J. Stat. Phys.
108
,
247
(
2002
).
30.
M. S.
Causo
and
S. G.
Whittington
,
J. Phys. A
36
,
L189
(
2003
).
31.
S.
Caracciolo
,
B. M.
Mognetti
, and
A.
Pelissetto
,
Macromol. Theory Simul.
17
,
67
(
2008
).
32.
N.
Madras
,
A.
Orlitsky
, and
L. A.
Shepp
,
J. Stat. Phys.
58
,
159
(
1990
).
33.
S.
Caracciolo
,
A.
Pelissetto
, and
A. D.
Sokal
,
J. Stat. Phys.
60
,
1
(
1990
).
34.
This is true if the determination of the number of walks going through a given lattice point takes a time of order 1. This can be obtained by using, e.g., a hash table. A practical implementation is discussed in
D. E.
Knuth
,
The Art of Computer Programming
(
Addison-Wesley
,
Reading, MA
,
1973
), Vol.
3
, see Algorithm C, p.
514
, and Exercise 23 in Sec. 6.4.
You do not currently have access to this content.