The number of chemical species of modest molecular weight that can be accessed with known synthetic methods is astronomical. An open challenge is to explore this space in a manner that will enable the discovery of molecular species and materials with optimized properties. Recently, an inverse molecular design strategy, the linear combination of atomic potentials (LCAP) approach [J. Am. Chem. Soc. 128, 3228 (2006)] was developed to optimize electronic polarizabilities and first hyperpolarizabilities. Here, using a simple tight-binding (TB) approach, we show that continuous optimization can be carried out on the LCAP surface successfully to explore vast chemical libraries of 102 to 1016 extended aromatic compounds. We show that the TB-LCAP optimization is not only effective in locating globally optimal structures based on their electronic polarizabilities and first hyperpolarizabilities, but also is straightforwardly extended to optimize transition dipole moments and HOMO-LUMO energy gaps. This approach finds optimal structures among 104 candidates with about 40 individual molecular property calculations. As such, for structurally similar molecular candidates, the TB-LCAP approach may provide an effective means to identify structures with optimal properties.

1.
P.
Ertl
,
J. Chem. Inf. Comput. Sci.
43
,
374
(
2003
).
2.
M. M.
Hann
and
T. I.
Opera
,
Curr. Opin. Chem. Biol.
8
,
255
(
2004
).
3.
F.
Besenbacher
,
I.
Chorkendorff
,
B. S.
Clausen
,
B.
Hammer
,
A. M.
Molenbroek
,
J. K.
Nørskov
, and
I.
Stensgaard
,
Science
279
,
1913
(
1998
);
[PubMed]
G.
Ceder
,
Y. M.
Chiang
,
D. R.
Sadoway
,
M. K.
Aydinol
,
Y. I.
Jang
, and
B.
Huang
,
Nature (London)
392
,
694
(
1998
);
S. V.
Dudiy
and
A.
Zunger
,
Phys. Rev. Lett.
97
,
046401
(
2006
);
[PubMed]
K.
Honkala
,
A.
Hellman
,
I. N.
Remediakis
,
A.
Logadottir
,
A.
Carlsson
,
S.
Dahl
,
C. H.
Christensen
, and
J. K.
Nørskov
,
Science
307
,
555
(
2005
);
[PubMed]
G. H.
Jóannesson
,
T.
Bligaard
,
A. V.
Ruban
,
H. L.
Skriver
,
K. W.
Jacobsen
, and
J. K.
Nøskov
,
Phys. Rev. Lett.
88
,
255506
(
2002
);
[PubMed]
O. A.
von Lilienfeld
and
M. E.
Tuckerman
,
J. Chem. Phys.
125
,
154104
(
2006
);
[PubMed]
O. A.
von Lilienfeld
and
M. E.
Tuckerman
,
J. Chem. Theory Comput.
3
,
1083
(
2007
).
[PubMed]
4.
H.
An
and
P. D.
Cook
,
Chem. Rev. (Washington, D.C.)
100
,
3311
(
2000
);
J.
Ellman
,
B.
Stoddard
, and
J.
Wells
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
2779
(
1997
);
[PubMed]
M. C.
Pirrung
,
Molecular Diversity and Combinatorial Chemistry: Principles and Applications
(
Elsevier
,
Oxford
,
2004
);
B. K.
Shoichet
,
Nature (London)
432
,
862
(
2004
);
B. R.
Stockwell
,
Nature (London)
132
,
846
(
2004
);
N. K.
Terrett
,
Combinatorial Chemistry
, (
Oxford University Press
,
New York
,
1998
).
5.
X.-D.
Xiang
,
X.
Sun
,
G.
Briceno
,
Y.
Lou
,
K.-A.
Wang
,
H.
Chang
,
W. G.
Wallace-Freedman
,
S.-W.
Chen
, and
P. G.
Schultz
,
Science
268
,
1738
(
1995
).
6.
A.
Franceschetti
and
A.
Zunger
,
Nature (London)
252
,
103
(
1999
).
7.
D.
Morgan
,
G.
Ceder
, and
S.
Curtarolo
,
Meas. Sci. Technol.
16
,
196
(
2005
).
8.
G. L. W.
Hart
,
V.
Blum
,
M. J.
Walorski
, and
A.
Zunger
,
Nat. Mater.
4
,
391
(
2005
).
9.
G. E.
Kellogg
and
S. F.
Semus
, in
Modern Methods of Drug Discovery
, edited by
A.
Hillisch
and
R.
Hilgenfeld
(
Birkhäuser Verlag
,
Boston
,
2003
).
10.
M.
Wang
,
X.
Hu
,
D. N.
Beratan
, and
W.
Yang
,
J. Am. Chem. Soc.
128
,
3228
(
2006
).
11.
C.
Kuhn
and
D. N.
Beratan
,
J. Phys. Chem.
100
,
10595
(
1996
).
12.
X.
Hu
,
D. N.
Beratan
, and
W.
Yang
,
J. Chem. Phys.
, (in press,
2008
);
S.
Keinan
,
X.
Hu
,
D. N.
Beratan
, and
W.
Yang
,
J. Phys. Chem. A
111
,
176
(
2007
);
[PubMed]
S.
Keinan
,
W. D.
Paquette
,
J. K.
Skoko
,
D. N.
Beratan
,
W.
Yang
,
S.
Shinde
,
P. A.
Johnston
,
J. S.
Law
, and
P.
Wipf
,
Org. Biomol. Chem.
(in press,
2008
).
13.
O. A.
von Lilienfeld
,
R. D.
Lins
, and
U.
Rothlisberger
,
Phys. Rev. Lett.
95
,
153021
(
2005
).
14.
M.
d’Avezac
and
A.
Zunger
,
J. Phys.: Condens. Matter
19
,
402201
(
2007
).
15.
A.
Franceschetti
,
S. V.
Dudiy
,
S. V.
Barabash
,
A.
Zunger
,
J.
Xu
, and
M.
van Schilfgaarde
,
Phys. Rev. Lett.
97
,
047202
(
2006
);
[PubMed]
L.-W.
Wang
and
A.
Zunger
,
J. Chem. Phys.
100
,
2394
(
1994
).
16.
V.
Marcon
,
O. A.
von Lilienfeld
, and
D.
Andrienko
,
J. Chem. Phys.
127
,
064305
(
2007
).
17.
18.
F. A.
Van-Catledge
,
J. Org. Chem.
45
,
4801
(
1980
).
19.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
);
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
20.
G.
Maerkl
and
P.
Kreitmeier
, in
Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain
, edited by
F.
Mathey
(
Elsevier Science
,
Oxford
,
2001
).
21.
H. A.
Kurtz
and
D. S.
Dudis
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
Wiley-VCH
,
New York
,
1998
), Vol.
12
.
22.
I. D. L.
Albert
,
T. J.
Marks
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
120
,
11174
(
1998
).
23.
See EPAPS Document No. E-JCPSA6-129-618829 for details of the property calculations using the Hückel tight method; optimization details; comparison to sum-over-state calculations; optimized transition moments and energy gaps; optimization result histograms; and normalized statistic histograms of the enumerating chemical spaces. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html; source code is available on request from the authors.
24.
R. W.
Boyd
,
Nonlinear Optics
(
Academic
,
New York
,
1992
);
D. R.
Kanis
,
M. A.
Ratner
, and
T. J.
Marks
,
Chem. Rev. (Washington, D.C.)
94
,
195
(
1994
);
S. M.
Risser
,
D. N.
Beratan
, and
S. R.
Marder
,
J. Am. Chem. Soc.
115
,
7719
(
1993
).
25.
S. S.
Rao
,
Optimization Theory and Application
, 2nd ed. (
Halsted
,
New York
,
1978
).
26.
E. F.
Archibong
and
A. J.
Thakkar
,
J. Chem. Phys.
98
,
8324
(
1993
);
M.
Blanchard-Desce
,
J. M.
Lehn
,
M.
Barzoukas
,
I.
Ledoux
, and
J.
Zyss
,
Chem. Phys.
181
,
281
(
1994
).
27.
D. N.
Beratan
,
J. N.
Onuchic
, and
J. W.
Perry
,
J. Phys. Chem.
91
,
2696
(
1987
).
28.
D. S.
Chemla
and
J.
Zyss
,
Nonlinear Optical Properties of Organic Molecules and Crystals
(
Academic
,
Orlando
,
1987
).
29.
S. R.
Marder
,
D. N.
Beratan
, and
L.-T.
Cheng
,
Science
252
,
103
(
1991
).
30.
For a diatomic π system, the Hückel Hamiltonian is
(HaHabHbaHb)
with the eigenstate energies E=(Ha+Hb)2±4Hab2+(HaHb)22. The energy gap is Egap=4Hab2+(HaHb)2. Egap decreases as Hab2 decreases.

Supplementary Material

You do not currently have access to this content.