This article presents a new complex absorbing potential (CAP) block Lanczos method for computing scattering eigenfunctions and reaction probabilities. The method reduces the problem of computing energy eigenfunctions to solving two energy dependent systems of equations. An energy independent block Lanczos factorization casts the system into a block tridiagonal form, which can be solved very efficiently for all energies. We show that CAP-Lanczos methods exhibit instability due to the non-normality of CAP Hamiltonians and may break down for some systems. The instability is not due to loss of orthogonality but to non-normality of the Hamiltonian matrix. While use of a Woods–Saxon exponential CAP—as opposed to a polynomial CAP—reduced non-normality, it did not always ensure convergence. Our results indicate that the Arnoldi algorithm is more robust for non-normal systems and less prone to break down. An Arnoldi version of our method is applied to a nonadiabatic tunneling Hamiltonian with excellent results, while the Lanczos algorithm breaks down for this system.

1.
B.
Noble
and
J. W.
Daniel
,
Applied Linear Algebra
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1977
).
2.
L. N.
Trefethen
and
M.
Embree
,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
(
Princeton University Press
,
NJ
,
2005
).
3.
P.
Henrici
,
Numer. Math.
4
,
24
(
1962
).
4.
A.
Van Der Sluis
,
Commun. ACM
18
,
30
(
1975
).
5.
F.
Chatelin
, in
Linear Algebra, Markov Chains and Queuing Models
, edited by
R. J.
Plemmons
and
C. D.
Meyere
(
Springer
,
New York
,
1993
), pp.
13
19
.
6.
F.
Chatin-Chatelin
, Is Nonnormality A Serious Difficulty, CERFACS Technical Report No. TR/PA/94/18,
1994
.
7.
D.
Hinrichsen
and
A. J.
Pritchard
, in
Systems and Networks: Mathematical Theory and Applications
, edited by
U.
Helmke
,
R.
Mennicken
, and
J.
Saurer
(
Academie-Verlag
,
Berlin
,
1994
), Vol.
1
, pp.
159
182
.
8.
N.
Hatano
and
D. R.
Nelson
,
Phys. Rev. Lett.
77
,
570
(
1996
).
9.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
,
Science
261
,
578
(
1993
).
10.
A. E.
Siegman
,
Appl. Phys. B: Lasers Opt.
60
,
247
(
1995
).
11.
D.
Neuhauser
and
M.
Bear
,
J. Chem. Phys.
90
,
4351
(
1989
).
12.
R.
Santra
,
Phys. Rev. A
74
,
034707
(
2006
).
13.
B.
Poirier
and
T.
Carrington
,Jr.
,
J. Chem. Phys.
118
,
17
(
2003
);
B.
Poirier
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
77
(
2003
).
14.
C.
Leforestier
and
R. E.
Wyatt
,
J. Chem. Phys.
78
,
2334
(
1983
).
15.
T.
Seideman
and
W. H.
Miller
,
J. Chem. Phys.
97
,
2499
(
1992
).
16.
D.
Wang
and
J. M.
Bowman
,
J. Chem. Phys.
100
,
1021
(
1994
).
17.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
103
,
2904
(
1995
).
18.
B.
Poirier
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
116
,
1215
(
2002
).
19.
H.
Zhang
and
S. C.
Smith
,
J. Chem. Phys.
115
,
5751
(
2001
).
20.
H.
Zhang
and
S. C.
Smith
,
Phys. Chem. Chem. Phys.
3
,
2282
(
2001
).
21.
S.
Li
,
G.
Li
, and
H.
Guo
,
J. Chem. Phys.
115
,
9637
(
2001
).
22.
C. A.
Moyer
,
Am. J. Phys.
72
,
351
(
2004
);
V. A.
Baskakov
and
A. V.
Popov
,
Wave Motion
14
,
123
(
1991
).
23.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
Johns Hopkins University Press
,
Baltimore
,
1996
).
24.
J. K.
Cullum
and
R. A.
Willoughby
,
Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I: Theory
(
SIAM
,
Philadelphia
,
2002
).
25.
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide
, edited by
Z.
Bai
,
J.
Demmel
,
J.
Dongarra
,
A.
Ruhe
, and
H.
Van der Vorst
, (
SIAM
,
Philadelphia
,
2000
).
26.
R. W.
Freund
and
N. M.
Nachtigal
,
SIAM J. Sci. Comput.
15
,
313
(
1994
).
27.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
28.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
111
,
9944
(
1999
);
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
114
,
1467
(
2000
).
29.
X.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
114
,
1473
(
2001
).
30.
J. C.
Tremblay
and
T.
Carrington
,Jr.
,
J. Chem. Phys.
122
,
244107
(
2005
);
[PubMed]
J. C.
Tremblay
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
125
,
094311
(
2006
).
[PubMed]
31.
W.
Bian
and
B.
Poirier
,
J. Chem. Phys.
121
,
4467
(
2004
).
32.
D.
Reignier
and
S. C.
Smith
,
Chem. Phys. Lett.
366
,
390
(
2002
).
33.
T.
Barconnier
,
F.
Chatelin
, and
V.
Fraysseŕ
, “
The influence of large nonnormality on the quality of convergence of iterative methods in linear algebra
,” CERFACS Technical Report No. TR/PA/94/07,
1994
.
34.
Y.
Saad
,
Numerical Methods for Large Eigenvalue Problems
(
Halsted
,
New York
,
1992
).
35.
C.
Zhu
and
H.
Nakamura
,
J. Chem. Phys.
101
,
10630
(
1994
).
36.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
102
,
7390
(
1995
).
37.
G.-J.
Kroes
and
D.
Neuhauser
,
J. Chem. Phys.
105
,
8690
(
1996
).
38.
H. W.
Jang
and
J. C.
Light
,
J. Chem. Phys.
102
,
3262
(
1995
).
39.
H. G.
Yu
and
S. C.
Smith
,
J. Chem. Phys.
107
,
23
(
1997
).
40.
H.
Zhang
and
S. C.
Smith
,
J. Theor. Comput. Chem.
2
,
563
(
2003
);
H.
Zhang
and
S. C.
Smith
,
J. Chem. Phys.
120
,
1161
(
2004
).
[PubMed]
41.
R. W.
Freund
and
N. M.
Nachtigal
,
ACM Trans. Math. Softw.
22
,
46
(
1996
).
42.
R. J.
Duchovic
,
Y. L.
Volobuev
,
G. C.
Lynch
,
A. W.
Jasper
,
D. G.
Truhlar
,
T. C.
Allison
,
A. F.
Wagner
,
B. C.
Garrett
,
J.
Espinosa-García
, and
J. C.
Corchado
, POTLIB (http://comp.chem.umn.edu/potlib).
43.
B.
Liu
and
P.
Sieghahn
,
J. Chem. Phys.
68
,
2457
(
1978
).
44.
D. G.
Truhlar
and
C. J.
Horowitz
,
J. Chem. Phys.
68
,
2466
(
1978
);
D. G.
Truhlar
and
C. J.
Horiwitz
,
J. Chem. Phys.
71
,
1514
(
1979
).
45.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
46.
S. K.
Gray
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
108
,
950
(
1998
).
47.
R. S.
Dumont
,
J. Chem. Phys.
116
,
9158
(
2002
).
48.
A.
Persky
and
H.
Kornweitz
,
J. Phys. Chem.
91
,
5496
(
1987
).
49.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
Lapack Users Guide
, 3rd ed. (
SIAM
,
Philadelphia
,
1999
).
50.
R. S.
Dumont
and
S.
Lam
,
Theor. Chem. Acc.
119
,
383
(
2008
).
51.
R.
Rajaie Khorasani
and
R. S.
Dumont
,
J. Chem. Phys.
127
,
184107
(
2007
).
52.
D.
Neuhauser
,
J. Chem. Phys.
93
,
2611
(
1990
);
D.
Neuhauser
,
J. Chem. Phys.
95
,
4927
(
1991
);
D.
Neuhauser
,
J. Chem. Phys.
100
,
5076
(
1993
).
53.
M. R.
Wall
and
D.
Neuhauser
,
J. Chem. Phys.
102
,
8011
(
1995
).
54.
V. A.
Mandelshtam
and
H. S.
Taylor
,
Phys. Rev. Lett.
78
,
3274
(
1997
);
V. A.
Mandelshtam
,
J. Chem. Phys.
108
,
9999
(
1998
).
55.
V. A.
Mandelshtam
,
T. P.
Grozdanov
, and
H. S.
Taylor
,
J. Chem. Phys.
103
,
10074
(
1995
);
T. P.
Grozdanov
,
V. A.
Mandelshtam
, and
H. S.
Taylor
,
J. Chem. Phys.
103
,
7990
(
1995
).
56.
57.
R. S.
Dumont
,
P.
Hazendonk
, and
A.
Bain
,
J. Chem. Phys.
113
,
3270
(
2000
).
You do not currently have access to this content.