A new direct relativistic four-component Kramers-restricted multiconfiguration self-consistent-field (KR-MCSCF) code for molecules has been implemented. The program is based upon Kramers-paired spinors and a full implementation of the binary double groups (D2h* and subgroups). The underlying quaternion algebra for one-electron operators was extended to treat two-electron integrals and density matrices in an efficient and nonredundant way. The iterative procedure is direct with respect to both configurational and spinor variational parameters; this permits the use of large configuration expansions and many basis functions. The relativistic minimum-maximum principle is implemented in a second-order restricted-step optimization algorithm, which provides sharp and well-controlled convergence. This paper focuses on the necessary modifications of nonrelativistic MCSCF methodology to obtain a fully variational KR-MCSCF implementation. The general implementation also allows for the use of molecular integrals from a two-component relativistic Hamiltonian as, for example, the Douglas–Kroll–Hess variants. Several sample applications concern the determination of spectroscopic properties of heavy-element atoms and molecules, demonstrating the influence of spin-orbit coupling in MCSCF approaches to such systems and showing the potential of the new method.

1.
B. O.
Roos
, in
Lecture Notes in Quantum Chemistry
, edited by
B. O.
Roos
(
Springer
,
Berlin
,
1992
).
2.
L.
Visscher
, in
Relativistic Electronic Structure Theory
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
), Vol.
1
, Chap. 6, p.
291
.
3.
T.
Fleig
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
119
,
2963
(
2003
).
4.
M.
Reiher
and
J.
Hinze
, in
Relativistic Effects in Heavy-Element Chemistry and Physics
, edited by
B. A.
Hess
(
Wiley
,
New York
,
2003
), pp.
61
88
.
5.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
112
,
3540
(
2000
).
6.
W.
Liu
,
W.
Kutzelnigg
, and
C.
van Wüllen
,
J. Chem. Phys.
112
,
3559
(
2000
).
7.
Y. S.
Kim
and
Y. S.
Lee
,
J. Chem. Phys.
119
,
12169
(
2003
).
8.
H. J. Aa.
Jensen
,
K. G.
Dyall
,
T.
Saue
, and
K.
Fægri
,
J. Chem. Phys.
. Phys.
104
,
4083
(
1996
).
9.
H. J. Aa.
Jensen
,
T.
Saue
,
L.
Visscher
,
V.
Bakken
,
E.
Eliav
,
T.
Enevoldsen
,
T.
Fleig
,
O.
Fossgaard
,
T.
Helgaker
,
J.
Laerdahl
,
C. V.
Larsen
,
P.
Norman
,
J.
Olsen
,
M.
Pernpointner
,
J. K.
Pedersen
,
K.
Ruud
,
P.
Salek
,
J. N. P.
van Stralen
,
J.
Thyssen
,
O.
Visser
, and
T.
Winther
, Dirac DIRAC04.0, a relativistic ab initio electronic structure program (
2004
); see http://dirac.chem.sdu.dk.
10.
H. J. Aa.
Jensen
and
H.
Ågren
,
Chem. Phys.
104
,
229
(
1986
).
11.
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
H.
Ågren
,
J. Chem. Phys.
87
,
451
(
1987
).
12.
DALTON, a molecular electronic structure program, release 2.0 (
2005
); see http://www.kjemi.uio.no/software/dalton/dalton.html.
13.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
14.
J. K.
Pedersen
, Dissertation,
Department of Chemistry, University of Southern Denmark
,
2004
.
15.
H. J. Aa.
Jensen
and
M.
Iliaš
, “
Two-component relativistic methods based on the quanternion modified dirac equation: From the Douglas-Kroll to the Barysz-Sadlej-Snijders infinite order
” (unpublished).
16.
T.
Saue
and
H. J. Aa.
Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
17.
T.
Fleig
,
J.
Olsen
, and
C. M.
Marian
,
J. Chem. Phys.
114
,
4775
(
2001
).
18.
J.
Thyssen
, Dissertation,
Department of Chemistry, University of Southern Denmark
,
2001
.
19.
G. A.
Aucar
,
H. J. Aa.
Jensen
, and
J.
Oddershede
,
Chem. Phys. Lett.
232
,
47
(
1995
).
20.
P.
Jørgensen
,
P.
Swanstrøm
, and
D. L.
Yeager
,
J. Chem. Phys.
78
,
347
(
1983
).
21.
H. J. Aa.
Jensen
and
P.
Jørgensen
,
J. Chem. Phys.
80
,
1204
(
1984
).
22.
R.
Fletcher
,
Practical Methods of Optimization
(
Wiley
,
Chichester
,
1980
).
23.
24.
T.
Fleig
, Dissertation,
Mathematisch Naturwissenschaftliche Fakultät, Universität Bonn
,
1998
.
25.
C.
Bauschlicher
,
J. Chem. Phys.
72
,
880
(
1980
).
26.
I.
Visscher
,
T.
Saue
, and
J.
Laerdahl
, “
MOLTRA, the integral transformation module in DIRAC
” (unpublished).
27.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
28.
B.
Liu
,
Proceedings of the National Resource for Computation in Chemistry Workshop
,
Berkeley
,
1978
(unpublished).
29.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
30.
L.
Visscher
,
J. Comput. Chem.
23
,
759
(
2002
).
31.
B. O.
Roos
, in
Ab Initio Methods in Quantum Chemistry
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), p.
399
.
32.
B. O.
Roos
and
P. R.
Taylor
,
Chem. Phys.
48
,
157
(
1980
).
33.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
34.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
35.
J.
Olsen
,
P.
Jørgensen
, and
J.
Simons
,
Chem. Phys. Lett.
169
,
463
(
1990
).
36.
J.
Olsen
,
J. Chem. Phys.
113
,
7140
(
2000
).
37.
T.
Fleig
,
L. K.
Sørensen
, and
J.
Olsen
,
Theor. Chem. Acc.
118
,
347
(
2007
).
38.
See EPAPS Document No. E-JCPSA6-129-630825 for auxiliary Fock matrices and details on the GASCIP module. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
39.
T.
Saue
and
H. J. Aa.
Jensen
,
J. Chem. Phys.
118
,
522
(
2003
).
40.
T.
Fleig
,
H. J. Aa.
Jensen
,
J.
Olsen
, and
L.
Visscher
,
J. Chem. Phys.
124
,
104106
(
2006
).
41.
P.
Schwerdtfeger
,
M.
Dolg
,
W. H. E.
Schwarz
,
G. A.
Bowmaker
, and
P. D. W.
Boyd
,
J. Chem. Phys.
91
,
1762
(
1989
).
42.
K.
Pitzer
,
Acc. Chem. Res.
12
,
271
(
1979
).
43.
P.
Pyykkö
,
Chem. Rev. (Washington, D.C.)
88
,
663
(
1988
).
44.
L. C.
O’Brien
,
A. E.
Oberlink
, and
B. O.
Roos
,
J. Phys. Chem. A
110
,
11954
(
2006
).
45.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
46.
K.
Fægri
, Jr.
,
Theor. Chim. Acta
105
,
252
(
2001
).
47.
K.
Andersson
,
M.
Barysz
,
A.
Bernhardsson
,
M. R. A.
Blomberg
,
D. L.
Cooper
,
T.
Fleig
,
M. P.
Fülscher
,
C.
de Graaf
,
B. A.
Hess
,
C.
Karlström
,
R.
Lindh
,
P.-Å.
Malmqvist
,
P.
Neogrády
,
J.
Olsen
,
B. O.
Roos
,
A. J.
Sadlej
,
M.
Schütz
,
B.
Schimmelpfennig
,
L.
Seijo
,
L.
Serrano-Andrés
,
P. E. M.
Siegbahn
,
J.
Stålring
,
T.
Thorsteinsson
,
V.
Veryazov
, and
P.-O.
Widmark
, MOLCAS, Version 5 (Lund University, Sweden,
2000
).
48.
B.
Wesendrup
,
J. K.
Laerdahl
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
110
,
9457
(
1999
).
49.
P. A.
Christiansen
,
J. Chem. Phys.
79
,
2928
(
1983
).
50.
K. G.
Dyall
,
Theor. Chem. Acc.
108
,
335
(
2002
);
K. G.
Dyall
,
Theor. Chem. Acc.
109
,
284
E
(
2003
);
Basis sets available from the Dirac Web site of http://dirac.chem.sdu.dk.
51.
M.
Iliaš
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
52.
M.
Barysz
,
A. J.
Sadlej
, and
J. G.
Snijders
,
Int. J. Quantum Chem.
65
,
225
(
1997
).
53.
AMFI, an atomic mean-field spin-orbit integral program (University of Stockholm, Sweden,
1996
).
54.
B. O.
Roos
and
P.-Å.
Malmqvist
,
Phys. Chem. Chem. Phys.
6
,
2919
(
2004
).
55.
M.
Abe
,
T.
Nakajima
, and
K.
Hirao
,
J. Chem. Phys.
125
,
234110
(
2006
).
56.
H.-S.
Lee
,
Y.-K.
Han
,
M. C.
Kim
,
C.
Bae
, and
Y. S.
Lee
,
Chem. Phys. Lett.
293
,
97
(
1998
).
57.
C. E.
Moore
,
Atomic Energy Levels
, Natl. Bur. Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, D.C.,
1949
), Vol.
III
.
58.
M.
Iliaš
,
H. J. Aa.
Jensen
,
V.
Kellö
,
B. O.
Roos
, and
M.
Urban
,
Chem. Phys. Lett.
408
,
210
(
2005
).
59.
T.
Saue
(private communication).
60.
F. W.
Froben
,
W.
Schulze
, and
U.
Kloss
,
Chem. Phys. Lett.
99
,
500
(
1983
).
61.
K. G.
Dyall
,
Chem. Phys. Lett.
224
,
186
(
1994
).

Supplementary Material

You do not currently have access to this content.