To obtain theoretical insight regarding the stability and formation dynamics of the interstellar ions HCO+ and HOC+, stationary points and the associated vibrational frequencies on the full nine-dimensional potential energy surface for the electronic ground state have been calculated using coupled-cluster theory with both single and double substitutions (CCSD). The energetics were refined with a higher-level coupled-cluster method CCSD(T), with core-valence electron correlation treated at the complete basis set limit. To elucidate the formation mechanism and internal relaxation processes, the reaction paths for the reactions H3++COH2+HCO+ and H3++COH2+HOC+ were calculated at the second-order Møller–Plesset (MP2) level, and corresponding single-point energies were obtained at the higher CCSD(T)/aug-cc-pVTZ level. Based on the analysis of the main reaction processes, a reduced-dimension five-dimensional potential energy surface for this system was constructed from 128440ab initio points calculated at the CCSD(T)/aug-cc-pVTZ level.

1.
R. C.
Woods
,
T. A.
Dixon
,
R. J.
Saykally
, and
P. G.
Szanto
,
Phys. Rev. Lett.
35
,
1269
(
1975
).
2.
M.
Bogey
,
C.
Demuynck
, and
J. L.
Destombes
,
Mol. Phys.
43
,
1043
(
1981
).
3.
C. S.
Gudeman
,
M. H.
Begemann
,
J.
Pfaff
, and
R. J.
Saykally
,
Phys. Rev. Lett.
50
,
727
(
1983
).
4.
T.
Amano
,
J. Chem. Phys.
79
,
3595
(
1983
).
5.
S. C.
Foster
,
A. R. W.
McKellar
, and
T. J.
Sears
,
J. Chem. Phys.
81
,
578
(
1984
).
6.
P. B.
Davies
and
W. J.
Rothwell
,
J. Chem. Phys.
81
,
5239
(
1984
).
7.
F.
Tinti
,
L.
Bizzocchi
,
C. D.
Esposti
, and
L.
Dore
,
Astrophys. J. Lett.
669
,
L113
(
2007
).
8.
V.
Lattanzi
,
A.
Walters
,
B. J.
Drouin
, and
J. C.
Pearson
,
Astrophys. J.
662
,
771
(
2007
).
9.
T.
Hirao
,
S.
Yu
, and
T.
Amano
,
J. Chem. Phys.
127
,
074301
(
2007
).
10.
T.
Hirao
,
S.
Yu
, and
T.
Amano
,
J. Mol. Spectrosc.
248
,
26
(
2008
).
11.
C. F.
Neese
,
C. M.
Lindsay
,
T.
Oka
,
P. S.
Kreynin
, and
I. R.
McNab
,
The 60th Ohio State University International Symposium on Molecular Spectroscopy
, The Ohio State University, Columbus, OH,
2005
: Paper No. MG08.
12.
M. A.
Smith
,
S.
Schlemmer
,
J.
von Richthofen
, and
D.
Gerlich
,
Astrophys. J. Lett.
578
,
L87
(
2002
).
13.
W.
Wagner-Redeker
,
P. R.
Kemper
,
M. F.
Jarrold
, and
M. T.
Bowers
,
J. Chem. Phys.
83
,
1121
(
1985
).
14.
E.
Herbst
and
D. E.
Woon
,
Astrophys. J. Lett.
463
,
L113
(
1996
).
15.
E.
Herbst
and
D. E.
Woon
,
Astrophys. J. Lett.
471
,
L73
(
1996
).
16.
M. F.
Jarrold
,
M. T.
Bowers
,
D. J.
DeFrees
,
A. D.
McLean
, and
E.
Herbst
,
Astrophys. J.
303
,
392
(
1986
).
17.
D. A.
Dixon
,
A.
Komornicki
, and
W. P.
Kraemer
,
J. Chem. Phys.
81
,
3603
(
1984
).
18.
G. E.
Moyano
,
S. A.
Jones
, and
M. A.
Collins
,
J. Chem. Phys.
124
,
124318
(
2006
).
19.
Y.
Yamaguchi
,
C. A.
Richards
, Jr.
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
101
,
8945
(
1994
).
20.
L. M.
Ziurys
and
A. J.
Apponi
,
Astrophys. J. Lett.
455
,
L73
(
1995
).
21.
A. J.
Apponi
and
L. M.
Ziurys
,
Astrophys. J.
481
,
800
(
1997
).
22.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
23.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
24.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
25.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
153
,
503
(
1988
).
26.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
,
Chem. Phys. Lett.
166
,
275
(
1990
).
27.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
,
Chem. Phys. Lett.
166
,
281
(
1990
).
28.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
29.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
30.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem.
14
,
545
(
1978
).
31.
C.
Hampel
,
K. A.
Peterson
, and
H. -J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
32.
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
33.
T.
van Mourik
,
A. K.
Wilson
, and
T. H.
Dunning
, Jr.
,
Mol. Phys.
96
,
529
(
1999
).
34.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
35.
H.
Li
and
R. J.
Le Roy
,
J. Phys. Chem. A
111
,
6248
(
2007
).
36.
J. Q.
Sun
and
K.
Ruedenberg
,
J. Chem. Phys.
99
,
5269
(
1993
).
37.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Revision A.1, Gaussian, Inc., Pittsburgh, PA,
2003
.
38.
MOLPRO, version 2006.1, a package of ab initio programs.
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
,
F. R.
Manby
,
M.
Schütz
 et al, see http://www.molpro.net.
39.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
(
Van Nostrand
,
New York
,
1979
).
40.
S. C.
Foster
,
A. R. W.
McKellar
,
I. R.
Peterkin
,
J. K. G.
Watson
,
F. S.
Pan
,
M. W.
Crofton
,
R. S.
Altman
, and
T.
Oka
,
J. Chem. Phys.
84
,
91
(
1986
).
41.
L.
Dore
,
S.
Beninati
,
C.
Puzzarini
, and
G.
Cazzoli
,
J. Chem. Phys.
118
,
7857
(
2003
).
42.
T. B.
McMahon
and
P.
Kebarle
,
J. Chem. Phys.
83
,
3919
(
1985
).
43.
J. M. L.
Martin
,
P. R.
Taylor
, and
T. J.
Lee
,
J. Chem. Phys.
99
,
286
(
1993
).
44.
G.
Winnewisser
,
S. P.
Belov
,
T.
Klaus
, and
R.
Schieder
,
J. Mol. Spectrosc.
184
,
468
(
1997
).
45.
E. J.
Bieske
,
S. A.
Nizkorodov
,
F. R.
Bennett
, and
J. P.
Maier
,
J. Chem. Phys.
102
,
5152
(
1995
).
46.
See EPAPS Document No. E-JCPSA6-129-012848 for an ASCII file containing a complete listing of the 128440 energies defining reduced-dimension 5D PES for the reactions H3++COH2+HCO+ and H3++COH2+HOC+ at the CCSD(T)/aCVTZ level of theory. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

Supplementary Material

You do not currently have access to this content.