Ab initio coupled clusters and multireference perturbation theory calculations with geometry optimization at the density functional or complete active space self-consistent-field levels have been carried out to compute ionization energies and to unravel the dissociation mechanism of allene and propyne cations, C3H4n+(n=13). The results indicate that the dominant decomposition channel of the monocation is c-C3H3++H, endothermic by 37.9 kcal/mol and occurring via a barrier of 43.1 kcal/mol, with possible minor contributions from H2CCCH++H and HCCCH++H2. For the dication, the competing reaction channels are predicted to be c-C3H3++H+, H2CCCH++H+, and CCCH++H3+, with dissociation energies of 20.5, 8.5, and 3.0 kcal/mol, respectively. The calculations reveal a H2-roaming mechanism for the H3+ loss, where a neutral H2 fragment is formed first, then roams around and abstracts a proton from the remaining molecular fragment before leaving the dication. According to Rice–Ramsperger–Kassel–Marcus calculations of energy-dependent rate constants for individual reaction steps, relative product yields vary with the available internal energy, with c-C3H3++H+ being the major product just above the dissociation threshold of 69.6 kcal/mol, in the energy range of 70–75 kcal/mol, and CCCH++H3+ taking over at higher energies. The C3H43+ trication is found to be not very stable, with dissociation thresholds of 18.5 and 3.7 kcal/mol for allene and propyne, respectively. Various products of Coulomb explosion of C3H43+, H2CCCH2++H+, CHCHCH2++H+, C2H22++CH2+, and CCH22++CH2+ are highly exothermic (by 98–185 kcal/mol). The tetracation of C3H4 is concluded to be unstable and therefore no more than three electrons can be removed from this molecule before it falls apart. The theoretical results are compared to experimental observations of Coulomb explosions of allene and propyne.

1.
A. D.
Bandrauk
,
Molecules in Laser Fields
(
Dekker
,
New York
,
1994
).
2.
T.
Zuo
and
A. D.
Bandrauk
,
Phys. Rev. A
52
,
R2511
(
1995
).
3.
S.
Chelkowski
and
A. D.
Bandrauk
,
J. Phys. B
28
,
L723
(
1995
).
4.
T.
Seideman
,
M. Y.
Ivanov
, and
P. B.
Corkum
,
Phys. Rev. Lett.
75
,
2819
(
1995
).
5.
C.
Cornaggia
,
M.
Schmit
, and
D.
Normand
,
Phys. Rev. A
51
,
1431
(
1995
).
6.
C.
Cornaggia
,
Phys. Rev. A
52
,
R4328
(
1995
).
7.
C.
Cornaggia
,
Phys. Rev. A
54
,
R2555
(
1996
).
8.
C.
Cornaggia
,
F.
Salin
, and
C.
Leblanc
,
J. Phys. B
29
,
L749
(
1996
).
9.
E.
Constant
,
H.
Stapefelt
, and
P. B.
Corkum
,
Phys. Rev. Lett.
76
,
4140
(
1996
).
10.
H. T.
Yu
,
T.
Zuo
, and
A. D.
Bandrauk
,
Phys. Rev. A
54
,
3290
(
1996
).
11.
S.
Chelkowski
,
A.
Conjusteau
,
T.
Zuo
, and
A. D.
Bandrauk
,
Phys. Rev. A
54
,
3235
(
1996
).
12.
S.
Chelkowski
,
C.
Foisy
, and
A. D.
Bandrauk
,
Phys. Rev. A
57
,
1176
(
1998
).
13.
H. T.
Yu
,
T.
Zuo
, and
A. D.
Bandrauk
,
J. Phys. B
31
,
1533
(
1998
).
14.
A.
Hishikawa
,
A.
Iwamae
, and
K.
Yamanouchi
,
J. Chem. Phys.
111
,
8871
(
1999
).
15.
A.
Hishikawa
,
A.
Iwamae
,
K.
Hoshina
,
M.
Kono
, and
K.
Yamanouchi
,
Chem. Phys.
231
,
315
(
1998
).
16.
A.
Hishikawa
,
A.
Iwamae
, and
K.
Yamanouchi
,
Phys. Rev. Lett.
83
,
1127
(
1999
).
17.
A.
Talebpour
,
A. D.
Bandrauk
,
J.
Yang
, and
S. L.
Chin
,
Chem. Phys. Lett.
313
,
789
(
1999
).
18.
A. D.
Bandrauk
,
D. G.
Musaev
, and
K.
Morokuma
,
Phys. Rev. A
59
,
4309
(
1999
).
19.
K. W. D.
Ledingham
,
D. J.
Smith
,
R. P.
Singhal
,
T.
McCanny
,
P.
Graham
,
H. S.
Kilic
,
W. X.
Peng
,
A. J.
Langley
,
P. F.
Taday
, and
C.
Kosmidis
,
J. Phys. Chem. A
103
,
2952
(
1999
).
20.
M.
Castillejo
,
S.
Couris
,
E.
Koudoumas
, and
M.
Martin
,
Chem. Phys. Lett.
308
,
373
(
1999
).
21.
J.
Kou
,
V.
Zhakhovskii
,
S.
Sakabe
,
K.
Nishihara
,
S.
Shimizu
,
S.
Bulanov
,
Y.
Izawa
,
Y.
Kato
, and
N.
Nakashima
,
J. Chem. Phys.
112
,
5012
(
2000
).
22.
A.
Talebpour
,
A. D.
Bandrauk
,
K.
Vijayalakshmi
, and
S. L.
Chin
,
J. Phys. B
33
,
4615
(
2000
).
23.
I.
Kawata
,
H.
Kono
, and
A. D.
Bandrauk
,
Phys. Rev. A
64
,
043411
(
2001
).
24.
S. M.
Hankin
,
D. M.
Villeneuve
,
P. B.
Corkum
, and
D. M.
Rayner
,
Phys. Rev. A
64
,
013405
(
2001
).
25.
K.
Mishima
,
M.
Hayashi
,
J.
Yi
,
S. H.
Lin
,
H. L.
Selzle
, and
E. W.
Schlag
,
Phys. Rev. A
66
,
033401
(
2002
).
26.
K.
Mishima
,
M.
Hayashi
,
J.
Yi
,
S. H.
Lin
,
H. L.
Selzle
, and
E. W.
Schlag
,
Phys. Rev. A
66
,
053408
(
2002
).
27.
T. S.
Zyubina
,
G. -S.
Kim
,
S. H.
Lin
,
A. M.
Mebel
, and
A. D.
Bandrauk
,
Chem. Phys. Lett.
359
,
253
(
2002
).
28.
T. S.
Zyubin
,
G. -S.
Kim
,
S. H.
Lin
,
A. M.
Mebel
, and
A. D.
Bandrauk
,
J. Theor. Comput. Chem.
2
,
205
(
2003
).
29.
V. R.
Bhardwaj
,
P. B.
Corkum
, and
D. M.
Rayner
,
Phys. Rev. Lett.
91
,
203004
(
2003
).
30.
H.
Kono
,
S.
Koseki
,
M.
Shiota
, and
Y.
Fujimura
,
J. Phys. Chem. A
105
,
5627
(
2001
).
31.
K.
Harumiya
,
H.
Kono
, and
Y.
Fujimura
,
Phys. Rev. A
66
,
043403
(
2002
).
32.
H.
Kono
,
Y.
Sato
,
Y.
Fujimura
, and
I.
Kawata
,
Laser Phys.
13
,
883
(
2003
).
33.
Y.
Sato
,
H.
Kono
,
S.
Koseki
, and
Y.
Fujimura
,
J. Am. Chem. Soc.
125
,
8019
(
2003
).
34.
J.
Ohkubo
,
T.
Kato
,
H.
Kono
, and
Y.
Fujimura
,
J. Chem. Phys.
120
,
9123
(
2004
).
35.
T. S.
Zyubina
,
S. H.
Lin
,
A. D.
Bandrauk
, and
A. M.
Mebel
,
Chem. Phys. Lett.
393
,
470
(
2004
).
36.
A. M.
Mebel
,
T. S.
Zyubina
,
Y. A.
Dyakov
,
A. D.
Bandrauk
, and
S. H.
Lin
,
Int. J. Quantum Chem.
102
,
506
(
2005
).
37.
T. S.
Zyubina
,
Y. A.
Dyakov
,
S. H.
Lin
,
A. D.
Bandrauk
, and
A. M.
Mebel
,
J. Chem. Phys.
123
,
134320
(
2005
).
38.
T. S.
Zyubina
,
A. M.
Mebel
,
M.
Hayashi
, and
S. H.
Lin
,
Phys. Chem. Chem. Phys.
10
,
2321
(
2008
).
39.
X. P.
Tang
,
S. F.
Wang
,
M. E.
Elshakre
,
L. R.
Gao
,
Y. L.
Wang
,
H. F.
Wang
, and
F. A.
Kong
,
J. Phys. Chem. A
107
,
13
(
2003
).
40.
S. W. J.
Scully
,
V.
Senthil
,
J. A.
Wyer
,
M. B.
Shah
,
E. C.
Montenegro
,
M.
Kimura
, and
H.
Tawara
,
Phys. Rev. A
72
,
030701
(
2005
).
41.
H.
Xu
,
T.
Okino
, and
K.
Yamanouchi
, “
Ultrafast hydrogen migration in allene in intense laser fields: Evidences in two-body Coulomb explosion
,”
J. Chem. Phys.
(submitted).
42.
A. C.
Parr
,
A. J.
Jason
, and
R.
Stockbauer
,
Int. J. Mass Spectrom. Ion Phys.
26
,
23
(
1978
).
43.
T.
Nakayama
and
K.
Watanabe
,
J. Chem. Phys.
40
,
558
(
1964
).
44.
C.
Baker
and
D. W.
Turner
,
Proc. R. Soc. London, Ser. A
308
,
19
(
1968
).
45.
A. C.
Parr
,
A. J.
Jason
,
R.
Stockbauer
, and
K. E.
McCulloh
,
Int. J. Mass Spectrom. Ion Phys.
30
,
319
(
1979
).
46.
G. H.
Ho
,
M. S.
Lin
,
Y. L.
Wang
, and
T. W.
Chang
,
J. Chem. Phys.
109
,
5868
(
1998
).
47.
D.
Forney
,
M. E.
Jacox
,
C. L.
Lugez
, and
W. E.
Thompson
,
J. Chem. Phys.
115
,
8418
(
2001
).
48.
For review, see,
X.
Gu
,
R. I.
Kaiser
, and
A. M.
Mebel
,
ChemPhysChem
9
,
350
(
2008
), and references therein.
49.
G.
Frenking
and
H.
Schwarz
,
Int. J. Mass Spectrom. Ion Process.
52
,
131
(
1983
).
50.
W. J.
van der Hart
,
Int. J. Mass Spectrom. Ion Process.
151
,
27
(
1995
).
51.
K.
Lammertsma
and
P. v. R.
Schleyer
,
J. Am. Chem. Soc.
112
,
7935
(
1990
).
52.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
53.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
54.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
);
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
89
,
7382
(
1988
);
G. E.
Scuseria
and
H. F.
Schaefer
III
,
J. Chem. Phys.
90
,
3700
(
1989
);
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
55.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
56.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
3898
(
1995
).
57.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA,
1998
.
58.
K.
Andersson
,
P. -Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
);
H. -J.
Werner
,
Mol. Phys.
89
,
645
(
1996
).
59.
MOLPRO, version
2006
, a package of ab initio programs,
H. -J.
Werner
,
P. J.
Knowles
,
R.
Lindh
 et al., see http://www.molpro.net
60.
H.
Eyring
,
S. H.
Lin
, and
S. M.
Lin
,
Basic Chemical Kinetics
(
Wiley
,
New York
,
1980
).
61.
P. J.
Robinson
and
K. A.
Holbrook
,
Unimolecular Reactions
(
Wiley
,
New York
,
1972
).
62.
J. I.
Steinfield
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1999
).
63.
Z. Z.
Yang
,
L. S.
Wang
,
Y. T.
Lee
,
D. A.
Shirley
,
S. Y.
Huang
, and
W. A.
Lester
, Jr.
,
Chem. Phys. Lett.
171
,
9
(
1990
).
64.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
(
1988
).
65.
K.
Hoshina
,
Y.
Furukawa
,
T.
Okino
, and
K.
Yamanouchi
,
J. Chem. Phys.
129
,
104302
(
2008
).
You do not currently have access to this content.