We analyzed the H/D isotope effect in the methyl torsional interactions accompanying two methyl internal rotations for acetone (CH3COCH3) and deuterated acetone (CD3COCD3 and CH3COCD3) in the ground state by means of the multicomponent molecular orbital (MC_MO) method, which directly accounts for the quantum effects of protons and deuterons. Our estimated rotational constants and moments of inertia for CH3COCH3 and CD3COCD3 agreed well with the experimental results because of the adequate treatment of protonic and deuteronic quantum effects afforded by the MC_MO method. Because the C–D bond distance in the CD3 group was shorter than the C–H distance in CH3 owing to the anharmonicity of the potential, the difference in potential energy surfaces of CH3COCH3, CD3COCD3, and CH3COCD3 was strongly related to the differences induced in geometrical parameters by the H/D isotope effect. The potential energy obtained by the MC_MO method was estimated as 290.88cm1 for CH3COCH3, which is in excellent agreement with the experimental results. For CH3COCD3, two potential energies were obtained for CH3 and CD3 internal rotations. The MC_MO method successfully elucidated the H/D isotope effect for methyl-methyl repulsive interactions by allowing the adequate treatment of protonic and deuteronic wave functions. The potential energies and bond distances associated with methyl internal rotation induced by the H/D isotope effect were also controlled by the distribution of wave functions of protons and deuterons.

1.
D. B.
Moss
,
C. S.
Parmenter
, and
G. E.
Ewing
,
J. Chem. Phys.
86
,
51
(
1987
).
2.
3.
J. D.
Swalen
and
C. C.
Costain
,
J. Chem. Phys.
31
,
1562
(
1959
).
4.
W. G.
Fateley
and
F. A.
Miller
,
Spectrochim. Acta, Part A
18
,
977
(
1962
).
5.
R.
Nelson
and
L.
Pierce
,
J. Mol. Spectrosc.
18
,
344
(
1965
).
6.
D. R.
Smith
,
B. K.
McKenna
, and
K. D.
Möller
,
J. Chem. Phys.
45
,
1904
(
1966
).
7.
T.
Iijima
,
Bull. Chem. Soc. Jpn.
45
,
3526
(
1972
).
8.
J.
Demaison
,
A.
Dubrulle
,
D.
Boucher
,
J.
Burie
, and
B. P.
Van Eijck
,
J. Mol. Spectrosc.
94
,
211
(
1982
).
9.
M.
Baba
,
I.
Hanazaki
, and
U.
Nagashima
,
J. Chem. Phys.
82
,
3938
(
1985
).
10.
J. M.
Vacherand
,
B. P.
Van Eijck
,
J.
Burie
, and
J.
Demaison
,
J. Mol. Spectrosc.
118
,
355
(
1986
).
11.
P.
Groner
,
G. A.
Guirgis
, and
J. R.
Durig
,
J. Chem. Phys.
86
,
565
(
1987
).
12.
H.
Zuckermann
,
B.
Schmitz
, and
Y.
Haas
,
J. Phys. Chem.
93
,
4083
(
1989
).
13.
J. G.
Philis
,
J. M.
Berman
, and
L.
Goodman
,
Chem. Phys. Lett.
167
,
16
(
1990
).
14.
H.
Zuckermann
,
Y.
Haas
,
M.
Drabbels
,
J.
Heinze
,
W. L.
Meerts
,
J.
Reuss
, and
J.
Van Bladel
,
Chem. Phys.
163
,
193
(
1992
).
15.
Y. G.
Smeyers
,
M. L.
Senent
,
V.
Botella
, and
D. C.
Moule
,
J. Chem. Phys.
98
,
2754
(
1993
).
16.
P.
Groner
,
J. Mol. Struct.
550–551
,
473
(
2000
).
17.
P.
Bowers
and
L.
Schäfer
,
J. Mol. Struct.
69
,
233
(
1980
).
18.
Y. G.
Smeyers
and
M. N.
Bellido
,
Int. J. Quantum Chem.
23
,
507
(
1983
).
19.
J. S.
Crighton
and
S.
Bell
,
J. Mol. Spectrosc.
118
,
383
(
1986
).
20.
A. G.
Ozkabak
,
J. G.
Philis
, and
L.
Goodman
,
J. Am. Chem. Soc.
112
,
7854
(
1990
).
21.
R. J.
Berry
,
R. J.
Waltman
,
J.
Pacansky
, and
A. T.
Hagler
,
J. Phys. Chem.
99
,
10511
(
1995
).
22.
B. A.
Krantz
,
A. K.
Srivastava
,
S.
Nauli
,
D.
Baker
,
R. T.
Sauer
, and
T. R.
Sosnick
,
Nat. Struct. Biol.
9
,
458
(
2002
).
23.
Z.
Shi
,
C. A.
Olson
,
N. R.
Kallenbach
, and
T. R.
Sosnick
,
J. Am. Chem. Soc.
124
,
13994
(
2002
).
24.
M.
Turowski
,
N.
Yamakawa
,
J.
Meller
,
K.
Kimata
,
T.
Ikegami
,
K.
Hosoya
,
N.
Tanaka
, and
E. R.
Thornton
,
J. Am. Chem. Soc.
125
,
13836
(
2003
).
25.
V.
Shafirovich
,
A.
Dourandin
, and
N. E.
Geacintov
,
J. Phys. Chem. B
105
,
8431
(
2001
).
26.
I.
Vakonakis
and
A. C.
LiWang
,
J. Am. Chem. Soc.
126
,
5688
(
2004
).
27.
J.
Wölk
and
R.
Strey
,
J. Phys. Chem. B
105
,
11683
(
2001
).
28.
M.
Mayer
and
T. L.
James
,
J. Am. Chem. Soc.
124
,
13376
(
2002
).
29.
B. W.
Chellgren
and
T. P.
Creamer
,
J. Am. Chem. Soc.
126
,
14734
(
2004
).
30.
D.
Sicinska
,
D. G.
Truhlar
, and
P.
Paneth
,
J. Am. Chem. Soc.
127
,
5414
(
2005
).
31.
J.
Pu
,
S.
Ma
,
J.
Gao
, and
D. G.
Truhlar
,
J. Phys. Chem. B
109
,
8551
(
2005
).
32.
T.
Miyazaki
,
Atom Tunneling Phenomena in Physics, Chemistry, and Biology
(
Springer-Verlag
,
Berlin
,
2003
).
33.
N. D.
Sokolov
,
M. V.
Vener
, and
V. A.
Savel’ev
,
J. Mol. Struct.
222
,
365
(
1990
).
34.
L.
Melander
and
W. H.
Saunders
,
Reaction Rate of Isotopic Molecules
(
Wiley
,
New York
,
1980
).
35.
A. R.
Ubbelohde
and
K. J.
Gallagher
,
Acta Crystallogr.
8
,
71
(
1955
).
36.
N.
Dalal
,
A.
Klymachyov
, and
A.
Bussmann-Holder
,
Phys. Rev. Lett.
81
,
5924
(
1998
).
37.
M.
Tachikawa
,
K.
Mori
,
K.
Suzuki
, and
K.
Iguchi
,
Int. J. Quantum Chem.
70
,
491
(
1998
).
38.
M.
Tachikawa
,
K.
Mori
,
H.
Nakai
, and
K.
Iguchi
,
Chem. Phys. Lett.
290
,
437
(
1998
).
39.
M.
Tachikawa
,
Chem. Phys. Lett.
360
,
494
(
2002
).
40.
T.
Ishimoto
,
M.
Tachikawa
,
M.
Yamauchi
,
H.
Kitagawa
,
H.
Tokiwa
, and
U.
Nagashima
,
J. Phys. Soc. Jpn.
73
,
1775
(
2004
).
41.
T.
Udagawa
,
T.
Ishimoto
,
H.
Tokiwa
,
M.
Tachikawa
, and
U.
Nagashima
,
J. Phys. Chem. A
110
,
7279
(
2006
).
42.
T.
Ishimoto
,
M.
Tachikawa
, and
U.
Nagashima
,
J. Chem. Phys.
124
,
014112
(
2006
).
43.
T.
Ishimoto
,
M.
Tachikawa
, and
U.
Nagashima
,
J. Chem. Phys.
125
,
144103
(
2006
).
44.
T.
Ishimoto
,
M.
Tachikawa
,
H.
Tokiwa
, and
U.
Nagashima
,
Chem. Phys.
314
,
231
(
2005
).
45.
Y.
Itou
,
S.
Mori
,
T.
Udagawa
,
M.
Tachikawa
,
T.
Ishimoto
, and
U.
Nagashima
,
J. Phys. Chem. A
111
,
261
(
2007
).
46.
T.
Ishimoto
,
Y.
Ishihara
,
H.
Teramae
,
M.
Baba
, and
U.
Nagashima
,
J. Chem. Phys.
128
,
184309
(
2008
).
47.
M.
Tachikawa
,
K.
Taneda
, and
K.
Mori
,
Int. J. Quantum Chem.
75
,
497
(
1999
).
48.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al., GAUSSIAN 03, Revision B.05, Gaussian, Inc., Pittsburgh, PA,
2004
.
49.
See EPAPS Document No. E-JCPSA6-129-002846 for the computed geometrical parameters. For more information on EPAPS, see http://www.aip.org/pubserves/epaps.html.
50.
T.
Ishimoto
,
M.
Tachikawa
, and
U.
Nagashima
,
Int. J. Quantum Chem.
106
,
1465
(
2006
).
51.
D. A.
Shea
,
L.
Goodman
, and
M. G.
White
,
J. Chem. Phys.
112
,
2762
(
2000
).

Supplementary Material

You do not currently have access to this content.