The difficulty of approximate density functionals in describing the energetics of Diels–Alder reactions and dimerization of aluminum complexes is analyzed. Both of these reaction classes involve formation of cyclic or bicyclic products, which are found to be underbound by the majority of functionals considered. We present a consistent view of these results from the perspective of delocalization error. This error causes approximate functionals to give too low energy for delocalized densities or too high energy for localized densities, as in the cyclic and bicyclic reaction products. This interpretation allows us to understand better a wide range of errors in main-group thermochemistry obtained with popular density functionals. In general, functionals with minimal delocalization error should be used for theoretical studies of reactions where there is a loss of extended conjugation or formation of highly branched, cyclic, and cagelike molecules.

1.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
2.
G. I.
Csonka
,
A.
Ruzsinszky
,
J. P.
Perdew
, and
S.
Grimme
,
J. Chem. Theory Comput.
4
,
888
(
2008
).
3.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
).
4.
M. D.
Wodrich
,
C.
Corminboeuf
,
P. R.
Schreiner
,
A. A.
Fokin
, and
P. v. R.
Schleyer
,
Org. Lett.
9
,
1851
(
2007
).
5.
P. R.
Schreiner
,
A. A.
Fokin
,
R. A.
Pascal
, and
A.
de Meijere
,
Org. Lett.
8
,
3635
(
2006
).
6.
Y.
Zhao
and
D. G.
Truhlar
,
Org. Lett.
8
,
5753
(
2006
).
7.
C. E.
Check
and
T. M.
Gilbert
,
J. Org. Chem.
70
,
9828
(
2005
).
8.
H. L.
Woodcock
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
,
J. Phys. Chem. A
106
,
11923
(
2002
).
9.
M. D.
Wodrich
,
C. S.
Wannere
,
Y.
Mo
,
P. D.
Jarowski
,
K. N.
Houk
, and
P. v. R.
Schleyer
,
Chem. Eur. J.
13
,
7731
(
2007
).
10.
P. R.
Schreiner
,
Angew. Chem. Int. Ed.
46
,
4217
(
2007
).
11.
S.
Grimme
,
Angew. Chem. Int. Ed.
45
,
4460
(
2006
).
12.
B. G.
Willis
and
K. F.
Jensen
,
J. Phys. Chem. A
102
,
2613
(
1998
).
13.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
).
14.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
125
,
201102
(
2006
).
15.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Phys. Rev. B
77
,
115123
(
2008
).
16.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
17.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
18.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
J. Chem. Phys.
126
,
191109
(
2007
).
19.
A.
Guner
,
K. S.
Khuoung
,
A. G.
Leach
,
P. S.
Lee
,
M. D.
Bartberger
, and
K. N.
Houk
,
J. Phys. Chem. A
107
,
11445
(
2003
).
20.
S. N.
Pieniazek
,
F. R.
Clemente
, and
K. N.
Houk
,
Angew. Chem. Int. Ed.
47
,
7746
(
2008
).
21.
L.
Rulíšek
,
P.
Šebek
,
Z.
Havalas
,
R.
Hrabal
,
P.
Čapek
, and
A.
Svatoš
,
J. Org. Chem.
70
,
6295
(
2005
).
22.
S.
Grimme
, personal communication (13 April
2008
). Calculations are frozen-core CCSD(T)/DZ//PBE0/TZVP with extrapolation to the basis set limit and core correlation effects treated at the MP2 level.
23.
M.
Ritala
,
K.
Kukli
,
A.
Rahtu
,
P. I.
Raisanen
,
M.
Leskela
,
T.
Sajavaara
, and
J.
Keinonen
,
Science
288
,
319
(
2000
).
24.
K.
Wade
,
J. Chem. Educ.
49
,
502
(
1972
).
25.
A.
Heyman
and
C. B.
Musgrave
,
J. Phys. Chem. B
108
,
5718
(
2004
).
26.
D. J.
Goebbert
,
H.
Hernandez
,
J. S.
Francisco
, and
P. G.
Wenthold
,
J. Am. Chem. Soc.
127
,
11684
(
2005
).
27.
H. Y.
Afeefy
,
J. F.
Liebman
, and
S. E.
Stein
, Neutral Thermochemical Data. National Institute of Standards and Technology. http://webbook.nist.gov/chemistry.
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, D.01, Gaussian, Inc., Wallingford, CT.
29.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
30.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
31.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
114
,
108
(
2001
).
32.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
35.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
36.
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
 et al.,
NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1
(
Pacific Northwest National Laboratory
,
Richland, WA
,
2007
).
37.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
124108
(
2007
).
38.
A. D.
Becke
,
Int. J. Quantum Chem., Quantum Chem. Symp.
23
,
599
(
1989
);
A. D.
Becke
and
R. M.
Dickson
,
J. Chem. Phys.
92
,
3610
(
1990
).
39.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
124
,
091102
(
2006
).
40.
R. D.
Amos
,
I. L.
Alberts
,
J. S.
Andrews
 et al., CADPAC6.5, the Cambridge analytic derivatives package,
1998
.
41.
A. D.
Becke
,
J. Chem. Phys.
119
,
2972
(
2003
).
42.
O. V.
Gritsenko
,
B.
Ensing
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
J. Phys. Chem. A
104
,
8558
(
2000
).
43.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
194112
(
2006
).
44.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
128
,
124105
(
2008
).
45.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
46.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
).
47.
E. R.
Johnson
,
O. J.
Clarkin
, and
G. A.
DiLabio
,
J. Phys. Chem. A
107
,
9953
(
2003
).
48.
E. R.
Johnson
and
G. A.
DiLabio
,
Chem. Phys. Lett.
419
,
333
(
2006
).
49.
Y.
Zhang
,
W.
Pan
, and
W.
Yang
,
J. Chem. Phys.
107
,
7921
(
1997
).
You do not currently have access to this content.