Circularly polarized emission from helical MOPV4 aggregates is studied theoretically based on a Hamiltonian including excitonic coupling, exciton phonon coupling, and site disorder. The latter is modeled via a Gaussian distribution of site energies. The frequency dependence of the circularly polarized luminescence dissymmetry glum(ω) contains structural information about the low-energy-neutral (excitonic) polaron from which emission originates. Near the 0-0 emission frequency, glum(ω) provides a measure of the exciton coherence length, while at lower energies, in the vicinity of the sideband frequencies, glum(ω) probes the polaron radius. The present work focuses on how the 0-0 dissymmetry, glum0-0, relates to the emitting exciton’s coherence function, from which the coherence length is deduced. In the strong disorder limit where the exciton is localized on a single chromophore, glum0-0 is zero. As disorder is reduced and the coherence function expands, glum0-0 increases more rapidly than the sideband dissymmetries, resulting in a pronounced surge in glum(ω) near the 0-0 transition frequency. The resulting spectral shape of glum(ω) is in excellent agreement with recent experiments on MOPV4 aggregates. In the limit of very weak disorder, corresponding to the motional narrowing regime, the coherence function extends over the entire helix. In this region, glum0-0 undergoes a surprising sign reversal but only for helices which are between n+12 and n+1 complete turns (n=0,1,). This unusual sign change is due to the dependence of the rotational line strength on long-range exciton coherences which are also responsible for a heightened sensitivity of glum(ω) to long-range excitonic coupling.

1.
A. P. H. J.
Schenning
and
E. W.
Meijer
,
Chem. Commun. (Cambridge)
2005
,
3245
.
2.
A. P. H. J.
Schenning
,
P.
Jonkheijm
,
E.
Peeters
, and
E. W.
Meijer
,
J. Am. Chem. Soc.
123
,
409
(
2001
).
3.
P.
Jonkheijm
,
F. J. M.
Hoeben
,
R.
Kleppinger
,
J.
van Herrikhuyzen
,
A. P. H. J.
Schenning
, and
E. W.
Meijer
,
J. Am. Chem. Soc.
125
,
15941
(
2003
).
4.
F. J. M.
Hoeben
,
L. M.
Herz
,
C.
Daniel
,
P.
Jonkheijm
,
A. P. H. J.
Schenning
,
C.
Silva
,
S. C. J.
Meskers
,
D.
Beljonne
,
R. T.
Phillips
,
R. H.
Friend
, and
E. W.
Meijer
,
Angew. Chem., Int. Ed.
43
,
1976
(
2004
).
5.
P.
Prins
,
K.
Senthilkumar
,
F. C.
Grozema
,
P.
Jonkheijm
,
A.
Schenning
,
E. W.
Meijer
, and
L. D. A.
Siebbeles
,
J. Phys. Chem. B
109
,
18267
(
2005
).
6.
C.
Jeukens
,
P.
Jonkheijm
,
F. J. P.
Wijnen
,
J. C.
Gielen
,
P. C. M.
Christianen
,
A.
Schenning
,
E. W.
Meijer
, and
J. C.
Maan
,
J. Am. Chem. Soc.
127
,
8280
(
2005
).
7.
P.
Jonkheijm
,
P.
van der Schoot
,
A.
Schenning
, and
E. W.
Meijer
,
Science
313
,
80
(
2006
).
8.
L. M.
Herz
,
C.
Daniel
,
C.
Silva
,
F. J. M.
Hoeben
,
A. P. H. J.
Schennnig
,
E. W.
Meijer
,
R. H.
Friend
, and
R. T.
Phillips
,
Phys. Rev. B
68
,
045203
(
2003
).
9.
D.
Beljonne
,
E.
Hennebicq
,
C.
Daniel
,
L. M.
Herz
,
C.
Silva
,
G. D.
Scholes
,
F. J. M.
Hoeben
,
P.
Jonkheijm
,
A. P. H. J.
Schenning
,
S. C. J.
Meskers
,
R. T.
Phillips
,
R. H.
Friend
, and
E. W.
Meijer
,
J. Phys. Chem. B
109
,
10594
(
2005
).
10.
C.
Daniel
,
S.
Westenhoff
,
F.
Makereel
,
R. H.
Friend
,
D.
Beljonne
,
L. M.
Herz
, and
C.
Silva
,
J. Phys. Chem. C
111
,
19111
(
2007
).
11.
F. C.
Spano
,
S. C. J.
Meskers
,
E.
Hennebicq
, and
D.
Beljonne
,
J. Am. Chem. Soc.
129
,
7044
(
2007
).
12.
B. M. W.
Langeveld-Voss
,
D.
Beljonne
,
Z.
Shuai
,
R. A. J.
Janssen
,
S. C. J.
Meskers
,
E. W.
Meijer
, and
J. L.
Bredas
,
Adv. Mater. (Weinheim, Ger.)
10
,
1343
(
1998
).
13.
G.
Lakhwani
,
G.
Koeckelberghs
,
S. C. J.
Meskers
, and
R. A. J.
Janssen
,
Chem. Phys. Lett.
437
,
193
(
2007
).
14.
S. C. J.
Meskers
,
E.
Peeters
,
B. M. W.
Langeveld-Voss
, and
R. A. J.
Janssen
,
Adv. Mater. (Weinheim, Ger.)
12
,
589
(
2000
).
15.
B. M. W.
Langeveld-Voss
,
R. A. J.
Janssen
, and
E. W.
Meijer
,
J. Mol. Struct.
521
,
285
(
2000
).
16.
F. C.
Spano
,
J. Chem. Phys.
122
,
234701
(
2005
).
17.
E. O.
Potma
and
D. A.
Wiersma
,
J. Chem. Phys.
108
,
4894
(
1998
).
18.
H.
Fidder
,
J.
Knoester
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
171
,
529
(
1990
).
19.
J-aggregates
, edited by
T.
Kobayashi
(
World Scientific
,
Singapore
,
1996
).
20.
C. C.
Wu
,
M. C.
Delong
,
Z. V.
Vardeny
, and
J. P.
Ferraris
,
Synth. Met.
137
,
939
(
2003
).
21.
P. F.
van Hutten
,
J.
Wildeman
,
A.
Meetsma
, and
G.
Hadziioannou
,
J. Am. Chem. Soc.
121
,
5910
(
1999
).
22.
W.
Porzio
,
S.
Destri
,
M.
Mascherpa
, and
S.
Bruckner
,
Acta Polym.
44
,
266
(
1993
).
23.
T.
Siegrist
,
C.
Kloc
,
R. A.
Laudise
,
H. E.
Katz
, and
R. C.
Haddon
,
Adv. Mater. (Weinheim, Ger.)
10
,
379
(
1998
).
24.
M.
Muccini
,
M.
Schneider
,
C.
Taliani
,
M.
Sokolowski
,
E.
Umbach
,
D.
Beljonne
,
J.
Cornil
, and
J. L.
Bredas
,
Phys. Rev. B
62
,
6296
(
2000
).
25.
F.
Meinardi
,
M.
Cerminara
,
A.
Sassella
,
A.
Borghesi
,
P.
Spearman
,
G.
Bongiovanni
,
A.
Mura
, and
R.
Tubino
,
Phys. Rev. Lett.
89
,
157403
(
2002
).
26.
W.
Gebauer
,
A.
Langner
,
M.
Schneider
,
M.
Sokolowski
, and
E.
Umbach
,
Phys. Rev. B
69
,
1254201
(
2004
).
27.
F.
Meinardi
,
M.
Cerminara
,
A.
Sassella
,
R.
Bonifacio
, and
R.
Tubino
,
Phys. Rev. Lett.
91
,
247401
(
2003
).
29.
F. C.
Spano
,
J. Chem. Phys.
116
,
5877
(
2002
).
30.
F. C.
Spano
,
Phys. Rev. B
71
,
235208
(
2005
).
31.
F. C.
Spano
,
J. Chem. Phys.
118
,
981
(
2003
).
32.
C.
Didraga
and
J.
Knoester
,
J. Chem. Phys.
121
,
10687
(
2004
).
33.
F. C.
Spano
,
Z.
Zhao
, and
S. C. J.
Meskers
,
J. Chem. Phys.
120
,
10594
(
2004
).
34.
A sign error in the reported pitch angle was corrected in an erratum to Ref. 11; see
J. Am. Chem. Soc.
129
,
16278E
(
2007
).
36.
J.
Cornil
,
D.
Beljonne
,
C. M.
Heller
,
I. H.
Campbell
,
B. K.
Laurich
,
D. L.
Smith
,
D. D. C.
Bradley
,
K.
Mullen
, and
J. L.
Bredas
,
Chem. Phys. Lett.
278
,
139
(
1997
).
37.
P. O. J.
Scherer
and
S. F.
Fischer
,
Chem. Phys. Lett.
86
,
269
(
1984
).
38.
M. R.
Philpott
,
J. Chem. Phys.
55
,
2039
(
1971
).
39.

Reference 11 includes an approximate form of the cubic frequency factor in defining the emission spectrum but the more accurate form reported here was actually used in all numerical calculations. However, using the approximate leads to negligible effects.

40.
A.
Rodger
and
B.
Norden
,
Circular Dichroism and Linear Dichroism
(
Oxford University Press
,
Oxford
,
1997
).
41.

The vertical transition frequency arises when converting the transition matrix element of the momentum operator (which appears in the magnetic dipole moment operator) to the matrix element of the electric dipole moment operator. In Ref. 34, we used the 0-0 transition frequency as an approximation, although the vertical transition frequency includes also the nuclear relaxation energy. The latter is approximately 0.2eV for the ring breathing mode in MOPVn.

42.
T.-Q.
Nguyen
,
I. B.
Martini
,
J.
Liu
, and
B. J.
Schwartz
,
J. Phys. Chem. B
104
,
237
(
2000
).
43.
45.
J.
Clark
,
C.
Silva
,
R. H.
Friend
, and
F. C.
Spano
,
Phys. Rev. Lett.
98
,
206406
(
2007
).
You do not currently have access to this content.