The local quantum theory is applied to the study of the momentum operator in atomic systems. Consequently, a quantum-based local momentum expression in terms of the single-electron density is determined. The limiting values of this function correctly obey two fundamental theorems: Kato’s cusp condition and the Hoffmann-Ostenhof and Hoffmann-Ostenhof exponential decay. The local momentum also depicts the electron shell structure in atoms as given by its local maxima and inflection points. The integration of the electron density in a shell gives electron populations that are in agreement with the ones expected from the Periodic Table of the elements. The shell structure obtained is in agreement with the higher level of theory computations, which include the Kohn–Sham kinetic energy density. The average of the local kinetic energy associated with the local momentum is the Weizsäcker kinetic energy. In conclusion, the local representation of the momentum operator provides relevant information about the electronic properties of the atom at any distance from the nucleus.

1.
R. F. W.
Bader
,
Can. J. Chem.
40
,
1164
(
1962
).
2.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
, B
864
(
1964
).
3.
4.
A. S.
Bamzai
and
B. M.
Deb
,
Rev. Mod. Phys.
53
,
95
(
1981
).
5.
M.
Spackman
,
J.
Howard
, and
R.
Destro
,
IUCR Newsl.
8
,
2
(
2000
).
6.
The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design
, edited by
C. F.
Matta
and
R. J.
Boyd
(
Wiley
,
New York
,
2007
).
7.
R. F.W.
Bader
,
R.
McWeeny
,
A.
Savin
,
R.
Ponec
 et al.,
Faraday Discuss.
2007
,
125
.
8.
S. L.
Luo
,
Int. J. Theor. Phys.
41
,
1713
(
2002
).
9.
W. A.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
10.
M.
Hoffmann-Ostenhof
and
T.
Hoffmann-Ostenhof
,
Phys. Rev. A
16
,
1782
(
1977
).
11.
N. H.
March
,
Electron Density of Atoms and Molecules
(
Academic
,
New York
,
1992
).
12.
R. A.
Mosna
,
I. P.
Hamilton
, and
L. Delle
Site
,
J. Phys. A
38
,
3869
(
2005
).
13.
I. P.
Hamilton
,
R. A.
Mosna
, and
L. Delle
Site
,
Theor. Chem. Acc.
118
,
407
(
2007
).
14.
E.
Nelson
,
Quantum Fluctuations
(
Princeton University Press
,
Princeton
,
1985
).
15.
S. K.
Ghosh
and
B. M.
Deb
,
Phys. Rep.
92
,
1
(
1982
).
16.
S. K.
Ghosh
,
Curr. Sci.
52
,
769
(
1983
).
17.
K. -K.
Kan
and
J. J.
Griffin
,
Phys. Rev. C
15
,
1126
(
1977
).
18.
C.
Salesi
and
E.
Recami
,
Found. Phys.
28
,
763
(
1998
).
19.
P. R.
Holland
,
The Quantum Theory of Motion
(
Cambridge University Press
,
Cambridge
,
1993
).
20.
K. K.
Wan
and
P. J.
Sumner
,
Phys. Lett. A
128
,
458
(
1988
).
22.
R. A.
Fisher
,
Proc. Cambridge Philos. Soc.
22
,
700
(
1925
).
25.
J. O.
Hirschfelder
,
A.
Christophe
, and
W. E.
Palke
,
J. Chem. Phys.
61
,
5435
(
1974
).
26.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
New York
,
1990
).
27.
R. F. W.
Bader
,
Phys. Rev. B
49
,
13348
(
1994
).
28.
L. Delle
Site
,
Int. J. Mod. Phys. B
14
,
771
(
2000
).
29.
L. Delle
Site
,
Int. J. Mod. Phys. B
14
,
1891
(
2000
).
30.
A.
Szaho
and
N.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
New York
,
1996
).
31.
S. B.
Sears
,
R.
Pair
, and
U.
Dinur
,
Isr. J. Chem.
19
,
165
(
1980
).
32.
J.
Jaramillo
,
C.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
1068
(
2003
).
33.
M.
Kaupp
,
H.
Bahmann
, and
A. V.
Arbuznikov
,
J. Chem. Phys.
127
,
194102
(
2007
).
34.
D.
Garcia-Aldea
and
J. E.
Alvarellos
,
J. Chem. Phys.
127
,
144109
(
2007
).
35.
D.
Garcia-Aldea
and
J. E.
Alvarellos
,
Phys. Rev. A
77
,
022502
(
2008
).
36.
G.
Hunter
,
Int. J. Quantum Chem.
29
,
197
(
1986
).
37.
G.
Hunter
,
Can. J. Chem.
74
,
1008
(
1996
).
38.
A. D.
Becke
,
Int. J. Quantum Chem.
23
,
599
(
1989
).
39.
A. D.
Becke
and
R. M.
Dickson
,
J. Chem. Phys.
92
,
3610
(
1990
).
40.
41.
P.
Pyykko
,
Chem. Rev. (Washington, D.C.)
88
,
563
(
1988
).
42.
H. J.
Bohorquez
,
C. F.
Matta
, and
R. J.
Boyd
, “
Characteristic lengths in atomic systems
” (unpublished).
43.
M.
Kohout
,
A.
Savin
, and
H.
Preuss
,
J. Chem. Phys.
95
,
1928
(
1991
).
44.
A.
Nagy
and
N. H.
March
,
Mol. Phys.
90
,
271
(
1997
).
45.
From the results in Ref. 44 the expressions for the second derivative limit can also be obtained, which are required for the use of Eq. (14).
46.
W. C.
Martin
,
A.
Musgrove
,
S.
Kotochigova
, and
J. E.
Sansonetti
, Table of Ground Levels and Ionization Energies for the Neutral Atoms, NIST Standard Reference Database 111,
2003
.
47.
R.
Cabrera-Trujillo
,
P.
Apell
,
J.
Oddershede
, and
J. R.
Sabin
,
AIP Conf. Proc.
680
,
86
(
2003
).
48.
R. D.
Harcourt
,
Found. Chem.
1
,
295
(
1999
).
49.
R. J.
Boyd
,
J. Phys. B
9
,
L69
(
1976
).
50.
Z.
Shi
and
R. J.
Boyd
,
J. Chem. Phys.
88
,
4375
(
1988
).
51.
R. F. W.
Bader
and
H.
Essen
,
J. Chem. Phys.
80
,
1943
(
1984
).
52.
C.
Eickerling
and
M.
Reiher
,
J. Chem. Theory Comput.
4
,
286
(
2008
).
53.
54.
A. M.
Navarrete-Lopez
,
J.
Garza
, and
R.
Vargas
,
J. Chem. Phys.
128
,
104110
(
2008
).
55.
H. L.
Schmider
and
A. D.
Becke
,
J. Mol. Struct.: THEOCHEM
527
,
51
(
2000
).
56.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
57.
W. P.
Wang
and
R. G.
Parr
,
Phys. Rev. A
16
,
891
(
1977
).
You do not currently have access to this content.