The solvent contribution λs to the reorganization energy of electron transfer can be estimated from averages of the potential energy gaps between neutral-pair and ion-pair states over an ensemble of structures generated from molecular dynamics simulations. Invoking a Marcus-type two-sphere model for charge separation and recombination in an aqueous environment, we explored the effect of a polarizable force field and noted a strong reduction of λs (by 45%) compared to the corresponding value obtained with a standard nonpolarizable force field. Both types of force fields yield λs values that in agreement with the Marcus theory, vary strictly linearly with the inverse of the donor-acceptor distance; the corresponding slopes translate into appropriate effective optical dielectric constants, ε1.0±0.2 for a nonpolarizable and ε1.7±0.4 for a polarizable force field. The reduction in the solvent reorganization energy due to a polarizable force field translates into a scaling factor that is essentially independent of the donor-acceptor distance. The corresponding effective optical dielectric constant, ε1.80, is in excellent agreement with experiment for water.

1.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
2.
G.
King
and
A.
Warshel
,
J. Chem. Phys.
93
,
8682
(
1990
).
3.
W. W.
Parson
,
Z. T.
Chu
, and
A.
Warshel
,
Biophys. J.
74
,
182
(
1998
).
4.
H. L.
Tavernier
and
M. D.
Fayer
,
J. Phys. Chem. B
104
,
11541
(
2000
).
5.
G. S. M.
Tong
,
I. V.
Kurnikov
, and
D. N.
Beratan
,
J. Phys. Chem. B
106
,
2381
(
2002
).
6.
K.
Siriwong
,
A. A.
Voityuk
,
M. D.
Newton
, and
N.
Rösch
,
J. Phys. Chem. B
107
,
2595
(
2003
).
7.
D. N.
LeBard
,
M.
Lilichenko
,
D. V.
Matyushov
,
Y. A.
Berlin
, and
M. A.
Ratner
,
J. Phys. Chem. B
107
,
14509
(
2003
).
8.
C. J. F.
Böttcher
,
Theory of Electric Polarization
(
Elsevier
,
Amsterdam
,
1973
).
9.
X.
Song
and
R. A.
Marcus
,
J. Chem. Phys.
99
,
7768
(
1993
).
10.
Y. -P.
Liu
and
M. D.
Newton
,
J. Phys. Chem.
98
,
7162
(
1994
);
Y. -P.
Liu
and
M. D.
Newton
,
J. Phys. Chem.
99
,
12382
(
1995
).
11.
A. A.
Milischuk
,
D. V.
Matyushov
, and
M. D.
Newton
,
Chem. Phys.
324
,
172
(
2006
).
12.
K.
Ando
,
J. Chem. Phys.
114
,
9470
(
2001
).
13.
S.
Tanaka
and
Y.
Sengoku
,
Phys. Rev. E
68
,
031905
(
2003
).
14.
J. S.
Bader
and
B. J.
Berne
,
J. Chem. Phys.
104
,
1293
(
1996
).
15.
J. S.
Bader
,
C. M.
Cortis
, and
B. J.
Berne
,
J. Chem. Phys.
106
,
2372
(
1997
).
16.
K.
Ando
,
J. Chem. Phys.
115
,
5228
(
2001
).
17.
K.
Ando
,
J. Chem. Phys.
106
,
116
(
1997
).
18.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
19.
H. J.
Kim
and
J. T.
Hynes
,
J. Chem. Phys.
96
,
5088
(
1992
).
20.
M.
Marchi
,
J. N.
Gehlen
,
D.
Chandler
, and
M. D.
Newton
,
J. Am. Chem. Soc.
115
,
4178
(
1993
).
21.
J. N.
Gehlen
,
D.
Chandler
,
H. J.
Kim
, and
J. T.
Hynes
,
J. Phys. Chem.
96
,
1748
(
1992
).
22.
A. D.
Buckingham
,
Proc. R. Soc. London, Ser. A
238
,
235
(
1956
).
23.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
 III
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
K. M.
Merz
,
B.
Wang
,
D. A.
Pearlman
,
M.
Crowley
,
S.
Brozell
,
V.
Tsui
,
H.
Gohlke
,
J.
Mongan
,
V.
Hornak
,
G.
Cui
,
P.
Beroza
,
C.
Schafmeister
,
J. W.
Caldwell
,
W. S.
Ross
, and
P. A.
Kollman
, AMBER 8, University of California, San Francisco,
2004
.
24.
K.
Ando
,
J. Chem. Phys.
101
,
2850
(
1994
).
25.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
26.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
27.
P.
Cieplak
,
J.
Caldwell
, and
P. A.
Kollman
,
J. Comput. Chem.
22
,
1048
(
2001
);
E.
Meng
,
P.
Cieplak
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
116
,
12061
(
1994
);
W.
Cornell
,
P.
Cieplak
,
C.
Bayly
,
I.
Gould
,
K.
Merz
,
D.
Ferguson
,
D.
Spellmeyer
,
T.
Fox
,
J.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
28.
J. W.
Caldwell
and
P. A.
Kollman
,
J. Phys. Chem.
99
,
6208
(
1995
).
29.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Di Nola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
30.
J. -P.
Ryckaert
,
G.
Cicciotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
31.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
32.
See EPAPS Document No. E-JCPSA6-129-009843 for tables with solvent reorganization energies for CS and CR, obtained with method (II), and for the Marcus two-sphere model with optical dielectric constants ε=1 and ε=2, as well as a comparison of scaled (TIP3P) and (POL3) results and data on the linear fits to the Marcus model. Figures demonstrate the convergence of the density during equilibration and the linear dependence of solvent reorganization energies obtained by method (I) on RDA1; also shown are the spectral density functions of NP and IP trajectories at RDA=5Å and time correlation functions of the potential energy gaps at various DA separations RDA. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
33.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
34.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
);
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
35.
A.
Toukmaji
,
C.
Sagui
,
J. A.
Board
, and
T.
Darden
,
J. Chem. Phys.
113
,
10913
(
2000
).
36.
M. L.
Saboungi
,
A.
Rahman
,
J. W.
Halley
, and
M.
Blander
,
J. Chem. Phys.
88
,
5818
(
1988
);
M.
Sprik
and
M. A.
Klein
,
J. Chem. Phys.
89
,
7556
(
1988
);
M.
Wilson
and
P. A.
Madden
,
J. Phys.: Condens. Matter
5
,
2687
(
1993
).
37.
A.
Warshel
and
W. W.
Parson
,
Q. Rev. Biophys.
34
,
563
(
2001
).
38.
M.
Tachiya
,
J. Phys. Chem.
97
,
5911
(
1993
).
39.
A. J.
Leggett
,
S.
Chakravarty
,
A.
Dorsey
,
M. P. A.
Fischer
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
40.
H. -X.
Zhou
and
A.
Szabo
,
J. Chem. Phys.
103
,
3481
(
1995
).
41.
With a box length L=25Å, RDA=10Å, and radius a=3.5Å of donor and acceptor spheres (see subsequent section of the text), one has (LRDA2a)/24Å.
42.
The cosine transform of the time correlation function (TCF) was calculated from the first 5000 points (20% of the full data set, representing 10 ps). A discrete Fourier transformation was employed after symmetrization of the data set and application of a Blackman window to reduce the bias of truncation. The resolution of the resulting spectral density was 1.67cm1.
43.
D. W.
Small
,
D. V.
Matyushov
, and
A. V.
Gregory
,
J. Am. Chem. Soc.
125
,
7470
(
2003
).
44.
R. A.
Marcus
and
P.
Siders
,
J. Phys. Chem.
86
,
622
(
1982
);
A.
Kira
,
J. Phys. Chem.
85
,
3047
(
1981
).
45.
D.
Rehm
and
A.
Weller
,
Isr. J. Chem.
8
,
259
(
1970
).
46.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
47.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
);
S. J.
Stuart
and
B. J.
Berne
,
J. Phys. Chem.
100
,
11934
(
1996
);
S. W.
Rick
and
B. J.
Berne
,
J. Phys. Chem. B
101
,
10488
(
1997
);
Y. -P.
Liu
,
K.
Kim
,
B. J.
Berne
,
R. A.
Friesner
, and
S. W.
Rick
,
J. Chem. Phys.
108
,
4739
(
1998
).
48.
J. W.
Ponder
and
D. A.
Case
,
Adv. Protein Chem.
66
,
27
(
2003
).
49.
S.
Gupta
and
D. V.
Matyushov
,
J. Phys. Chem. A
108
,
2087
(
2004
).
M. J.
Thompson
,
K. S.
Schweizer
, and
D.
Chandler
,
J. Chem. Phys.
76
,
1128
(
1982
);
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
99
,
2902
(
1993
).
51.
G.
King
and
A.
Warshel
,
J. Chem. Phys.
91
,
3647
(
1989
).
52.
G.
Lamoureux
,
A. D.
MacKerell
, Jr.
, and
B.
Roux
,
J. Chem. Phys.
119
,
5185
(
2003
).

Supplementary Material

You do not currently have access to this content.