A theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions is presented from first principles without employing any empirical potential models. The present calculations are based on ab initio molecular dynamics for trajectory generation and wavelet analysis of the simulated trajectories for time dependent frequency calculations. Results are obtained for two different deuterated aqueous solutions: the first one is a relatively dilute solution of a single Cl ion and the second one is a concentrated solution of NaCl (3M) dissolved in liquid D2O. It is found that the frequencies of OD bonds in the anion hydration shell, i.e., those which are hydrogen bonded to the chloride ion, have a higher stretch frequency than those in the bulk water. Also, on average, the frequencies of hydration shell OD modes are found to increase with increase in the anion-water hydrogen bond distance. On the dynamical side, when the vibrational spectral diffusion is calculated exclusively for the hydration shell water molecules in the first solution, the dynamics reveals three time scales: a short-time relaxation (200fs) corresponding to the dynamics of intact ion-water hydrogen bonds, a slower relaxation (3ps) corresponding to the lifetimes of chloride ion-water hydrogen bonds, and another longer-time constant (20ps) corresponding to the escape dynamics of water from the anion hydration shell. Existence of such three time scales for hydration shell water molecules was also reported earlier for water containing a single iodide ion using classical molecular dynamics [B. Nigro et al, J. Phys. Chem. A110, 11237 (2006)]. Hence, the present study confirms the basic results of this earlier work using a different methodology. However, when the vibrational spectral diffusion is calculated over all the OD modes, only two time scales of 150fs and 2.7ps are found without the slowest component of 20ps. This is likely because of the very small weight that the hydration shell water molecules carry to the overall spectral diffusion in the solution containing a single ion. For the concentrated solution also, the slowest component of 20ps is not found in the spectral diffusion of all water molecules because a distinct separation between the hydration shell and bulk water in terms of their stretch frequencies does not hold at this high concentration regime. The present first principles results are compared with those of the available experiments and classical simulations.

1.
R.
Laenen
,
C.
Rauscher
, and
A.
Laubereau
,
Phys. Rev. Lett.
80
,
2622
(
1998
);
R.
Laenen
,
K.
Simeonidis
, and
A.
Laubereau
,
J. Phys. Chem. B
106
,
408
(
2002
).
2.
S.
Woutersen
,
U.
Emmerichs
, and
H. J.
Bakker
,
Science
278
,
658
(
1997
);
S.
Woutersen
and
H. J.
Bakker
,
Phys. Rev. Lett.
83
,
2077
(
1999
).
3.
G. M.
Gale
,
G.
Gallot
,
F.
Hache
,
N.
Lascoux
, and
S.
Bratos
,
Phys. Rev. Lett.
82
,
1068
(
1999
);
S.
Bratos
,
G. M.
Gale
,
G.
Gallot
,
F.
Hache
,
N.
Lascoux
, and
J. -C.
Leickman
,
Phys. Rev. E
61
,
5211
(
2000
).
4.
Z.
Wang
,
A.
Pakoulev
,
Y.
Pang
, and
D. D.
Dlott
,
Chem. Phys. Lett.
378
,
281
(
2003
);
A.
Pakoulev
,
Z.
Wang
,
Y.
Pang
, and
D. D.
Dlott
,
Chem. Phys. Lett.
371
,
594
(
2003
).
5.
J. B.
Asbury
,
T.
Steinel
,
C.
Stromberg
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
J. Phys. Chem. A
108
,
1107
(
2004
).
6.
T.
Steinel
,
J. B.
Asbury
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
Chem. Phys. Lett.
386
,
295
(
2004
);
J. B.
Asbury
,
T.
Steinel
,
K.
Kwak
,
S. A.
Corcelli
,
C. P.
Lawrence
,
J. L.
Skinner
, and
M. D.
Fayer
,
J. Chem. Phys.
121
,
12431
(
2004
).
[PubMed]
7.
C. J.
Fecko
,
J. D.
Eaves
,
J. J.
Loparo
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Science
301
,
1698
(
2003
);
[PubMed]
J. D.
Eaves
,
J. J.
Loparo
,
C. J.
Fecko
,
S. T.
Roberts
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
13019
(
2005
).
[PubMed]
8.
C. J.
Fecko
,
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
122
,
054506
(
2005
);
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
084502
(
2006
).
[PubMed]
9.
J. J.
Loparo
,
S. T.
Roberts
, and
A.
Tokmakoff
,
J. Chem. Phys.
125
,
194521
(
2006
).
10.
J.
Stenger
,
D.
Madsen
,
P.
Hamm
,
E. T. J.
Nibbering
, and
T.
Elsaesser
,
J. Phys. Chem. A
106
,
2341
(
2002
);
M. L.
Cowan
,
B. D.
Bruner
,
N.
Huse
,
J. R.
Dwyer
,
B.
Chugh
,
E. T. J.
Nibbering
,
T.
Elsaesser
, and
R. J. D.
Miller
,
Nature (London)
434
,
199
(
2005
).
11.
M. F.
Kropman
and
H. J.
Bakker
,
Science
291
,
2118
(
2001
).
12.
M. F.
Kropman
and
H. J.
Bakker
,
J. Chem. Phys.
115
,
8942
(
2001
).
13.
S.
Park
and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
16731
(
2007
).
14.
H. S.
Tan
,
I. R.
Piletic
,
R. E.
Riter
,
N. E.
Levinger
, and
M. D.
Fayer
,
Phys. Rev. Lett.
94
,
057405
(
2005
).
15.
S.
Woutersen
and
H. J.
Bakker
,
Phys. Rev. Lett.
96
,
138305
(
2006
).
16.
H. -K.
Nienhuys
,
A. J.
Lock
,
R. A.
van Santen
, and
H. J.
Bakker
,
J. Chem. Phys.
117
,
8021
(
2002
).
17.
M.
Rini
,
B. -Z.
Magnes
,
E.
Pines
, and
E. T. J.
Nibbering
,
Science
301
,
349
(
2003
).
18.
B.
Nigro
,
S.
Re
,
D.
Laage
,
R.
Rey
, and
J. T.
Hynes
,
J. Phys. Chem. A
110
,
11237
(
2006
).
19.
D.
Laage
and
J. T.
Hynes
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
11167
(
2007
).
20.
S.
Chowdhuri
and
A.
Chandra
,
J. Phys. Chem. B
110
,
9674
(
2006
);
[PubMed]
A.
Chandra
,
J. Phys. Chem. B
107
,
3899
(
2003
).
21.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
22.
D.
Marx
and
J.
Hutter
, in
Modern Methods and Algorithms of Quantum Chemistry
, edited by
J.
Grotendorst
(
NIC
,
FZ Jülich
,
2000
), see www.theochem.ruhr-uni-bochum.de/go/cprev.html
23.
S.
Raugei
and
M. L.
Klein
,
J. Am. Chem. Soc.
123
,
9484
(
2001
);
[PubMed]
S.
Raugei
and
M. L.
Klein
,
J. Chem. Phys.
116
,
196
(
2002
).
24.
J. M.
Heuft
and
E. J.
Meijer
,
J. Chem. Phys.
119
,
11788
(
2003
);
J. M.
Heuft
and
E. J.
Meijer
,
J. Chem. Phys.
123
,
094506
(
2005
).
25.
M.
Fuentes
,
P.
Guttorp
, and
P. D.
Sampson
, in
Statistical Methods for Spatio-Temporal Systems
, edited by
B.
Finkenstädt
,
L.
Held
, and
V.
Isham
(
Chapman and Hall
,
London
/
CRC
,
Boca Raton
,
2007
), Chap. 3.
26.
L. V.
Vela-Arevalo
and
S.
Wiggins
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
1359
(
2001
).
27.
A.
Semparithi
and
S.
Keshavamurthy
,
Phys. Chem. Chem. Phys.
5
,
5051
(
2003
), see Sec. IV for a calculation of time dependent frequencies using the wavelet method.
28.
B. S.
Mallik
,
A.
Semparithi
, and
A.
Chandra
,
J. Phys. Chem. A
112
,
5104
(
2008
).
29.
J.
Hutter
,
A.
Alavi
,
T.
Deutsch
,
M.
Bernasconi
,
S.
Goedecker
,
D.
Marx
,
M.
Tuckerman
, and
M.
Parrinello
, CPMD program, MPI für Festkörperforschung and IBM Zurich Research Laboratory.
30.
Handbook of Chemistry and Physics
, edited by
D. R.
Lide
(
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
London
,
2006
), Vol.
87
.
31.
M.
Laliberte
and
W. E.
Cooper
,
J. Chem. Eng. Data
49
,
1141
(
2004
).
32.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
33.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
34.
See, for example,
P.
Hunt
and
M.
Sprik
,
ChemPhysChem
6
,
1805
(
2005
);
[PubMed]
H. -S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
125
,
154507
(
2006
), and references therein.
[PubMed]
35.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
36.
I. -F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
,
J. I.
Siepmann
,
J.
VandeVondele
,
M.
Sprik
,
J.
Hutter
,
B.
Chen
,
M. L.
Klein
,
F.
Mohamed
,
M.
Krack
, and
M.
Parrinello
,
J. Phys. Chem. B
108
,
12990
(
2004
).
37.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
);
[PubMed]
E.
Schwegler
,
C.
Grossman
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
121
,
5400
(
2004
).
[PubMed]
38.
Y. A.
Mantz
,
B.
Chen
, and
G. J.
Martyna
,
Chem. Phys. Lett.
405
,
294
(
2005
).
39.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
40.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
41.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
42.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
);
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
);
P. L.
Silvestrelli
,
M.
Bernasconi
, and
M.
Parrinello
,
Chem. Phys. Lett.
277
,
478
(
1997
).
43.
M.
Krack
,
A.
Gambirasio
, and
M.
Parrinello
,
J. Chem. Phys.
117
,
9409
(
2002
);
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
[PubMed]
44.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
116
,
10372
(
2002
).
45.
M.
Boero
,
K.
Terakura
,
T.
Ikeshoji
,
C. C.
Liew
, and
M.
Parrinello
,
Phys. Rev. Lett.
85
,
3245
(
2000
);
[PubMed]
M.
Boero
,
K.
Terakura
,
T.
Ikeshoji
,
C. C.
Liew
, and
M.
Parrinello
,
J. Chem. Phys.
115
,
2219
(
2001
).
46.
M.
Boero
,
J. Phys. Chem. A
111
,
12248
(
2007
).
47.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
);
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
48.
B.
Kirchner
,
J.
Stubbs
, and
D.
Marx
,
Phys. Rev. Lett.
89
,
215901
(
2002
).
49.
J. M.
Heuft
and
E. J.
Meijer
,
Phys. Chem. Chem. Phys.
8
,
3116
(
2006
).
50.
M.
Cavallari
,
C.
Cavazzoni
, and
M.
Ferrario
,
Mol. Phys.
102
,
959
(
2004
).
51.
T.
Ikeda
,
M.
Hirata
, and
T.
Kimura
,
J. Chem. Phys.
119
,
12386
(
2003
).
52.
K.
Leung
and
S. B.
Rempe
,
J. Am. Chem. Soc.
126
,
344
(
2004
).
53.
L. M.
Ramaniah
,
M.
Barnasconi
, and
M.
Parrinello
,
J. Chem. Phys.
111
,
1587
(
1999
);
A. P.
Lyubartsev
,
K.
Laasonen
, and
A.
Laaksonen
,
J. Chem. Phys.
114
,
3120
(
2001
).
54.
M. -P.
Gaigeot
and
M.
Sprik
,
J. Phys. Chem. B
108
,
7458
(
2004
).
55.
E.
Tsuchida
,
Y.
Kanada
, and
M.
Tsukada
,
Chem. Phys. Lett.
311
,
236
(
1999
).
56.
M.
Pagliai
,
G.
Cardini
,
R.
Righini
, and
V.
Schettino
,
J. Chem. Phys.
119
,
6655
(
2003
).
57.
J. A.
Morrone
and
M. E.
Tuckerman
,
J. Chem. Phys.
117
,
4403
(
2002
).
58.
M.
Diraison
,
G. J.
Martyna
, and
M. E.
Tuckerman
,
J. Chem. Phys.
111
,
1096
(
1999
).
59.
A. D.
Boese
,
A.
Chandra
,
J. M. L.
Martin
, and
D.
Marx
,
J. Chem. Phys.
119
,
5965
(
2003
).
60.
J. A.
Morrone
,
K. E.
Haslinger
, and
M. E.
Tuckerman
,
J. Phys. Chem. B
110
,
3712
(
2006
).
61.
I. -F. W.
Kuo
and
C. J.
Mundy
,
Science
303
,
658
(
2004
).
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
63.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
);
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
64.
J. M.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
65.
N. C.
Handy
and
A. J.
Cohen
,
J. Chem. Phys.
116
,
5411
(
2002
).
66.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
);
A. D.
Boese
and
N. C.
Handy
,
J. Chem. Phys.
114
,
5497
(
2001
).
67.
See, for example,
M.
Boero
,
T.
Ikeshoji
,
C. C.
Liew
,
K.
Terakura
, and
M.
Parrinello
,
J. Am. Chem. Soc.
126
,
6280
(
2004
);
[PubMed]
C. J.
Mundy
,
J.
Hutter
, and
M.
Parrinello
,
J. Am. Chem. Soc.
122
,
4837
(
2000
).
68.
M. E.
Tuckerman
,
A.
Chandra
, and
D.
Marx
,
Acc. Chem. Res.
39
,
151
(
2006
);
[PubMed]
A.
Chandra
,
M. E.
Tuckerman
, and
D.
Marx
,
Phys. Rev. Lett.
99
,
145901
(
2007
).
[PubMed]
69.
M. J.
McGrath
,
J. I.
Siepmann
,
I. -F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
ChemPhysChem
6
,
1894
(
2005
);
[PubMed]
M. J.
McGrath
,
J. I.
Siepmann
,
I. -F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
J. Phys. Chem. A
110
,
640
(
2006
).
[PubMed]
70.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
71.
L. X.
Dang
,
Chem. Phys. Lett.
200
,
21
(
1992
);
L. X.
Dang
and
B. C.
Garrett
,
J. Chem. Phys.
99
,
2972
(
1993
).
72.
S.
Koneshan
,
J. C.
Rasaiah
,
R. M.
Lynden-Bell
, and
S. H.
Lee
,
J. Phys. Chem. B
102
,
4193
(
1998
).
73.
R.
Carmona
,
W.
Hwang
, and
B.
Torresani
,
Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation
(
Academic
,
New York
,
1998
).
74.
MATLAB, Version-R2007a, The Math Works (http://www.mathworks.com).
75.
J. -J.
Max
and
C.
Chapados
,
J. Chem. Phys.
115
,
2664
(
2001
).
76.
C. P.
Lawrence
and
J. L.
Skinner
,
J. Chem. Phys.
118
,
264
(
2003
);
C. P.
Lawrence
and
J. L.
Skinner
,
Chem. Phys. Lett.
369
,
472
(
2003
).
77.
S. A.
Corcelli
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Chem. Phys.
120
,
8107
(
2004
).
78.
R.
Rey
,
K. B.
Moller
, and
J. T.
Hynes
,
J. Phys. Chem. A
106
,
11993
(
2002
);
K. B.
Moller
,
R.
Rey
, and
J. T.
Hynes
,
J. Phys. Chem. A
108
,
1275
(
2004
).
79.
Y.
Wang
and
Y.
Tominaga
,
J. Chem. Phys.
101
,
3453
(
1994
);
K.
Mizoguchi
,
T.
Ujike
, and
Y.
Tominaga
,
J. Chem. Phys.
109
,
1867
(
1998
);
Y.
Amo
and
Y.
Tominaga
,
Phys. Rev. E
58
,
7553
(
1998
).
80.
I. -F. W.
Kuo
and
D. J.
Tobias
,
J. Phys. Chem. A
106
,
10969
(
2002
).
81.
H. -S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
126
,
164501
(
2007
).
82.
R.
Ramirez
,
T.
Lopez-Ciudad
,
P.
Kumar
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
83.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
);
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
);
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
).
84.
D.
Rapaport
,
Mol. Phys.
50
,
1151
(
1983
).
85.
A.
Chandra
,
Phys. Rev. Lett.
85
,
768
(
2000
).
86.
S.
Balasubramanian
,
S.
Pal
, and
B.
Bagchi
,
Phys. Rev. Lett.
89
,
115505
(
2002
).
87.
A.
Luzar
,
J. Chem. Phys.
113
,
10663
(
2000
).
88.
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
);
[PubMed]
A.
Luzar
and
D.
Chandler
,
Nature (London)
379
,
55
(
1996
).
89.
H.
Xu
and
B. J.
Berne
,
J. Phys. Chem. B
105
,
11929
(
2001
);
H.
Xu
,
H. A.
Stern
, and
B. J.
Berne
,
J. Phys. Chem. B
106
,
2054
(
2002
).
90.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
J. Phys. Chem.
87
,
5071
(
1983
).
91.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford
,
New York
,
1987
).
92.
S.
Roychowdhury
and
B.
Bagchi
,
Chem. Phys.
343
,
76
(
2008
).
93.
J. R.
Schmidt
,
S. A.
Corcelli
, and
J. L.
Skinner
,
J. Chem. Phys.
121
,
8887
(
2004
).
94.
D.
Laage
and
J. T.
Hynes
,
J. Phys. Chem. B
112
,
7697
(
2008
).
95.
S. H.
Northrup
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2700
(
1980
).
96.
J. M. J.
Swanson
,
C. M.
Maupin
,
H.
Chen
,
M. K.
Petersen
,
J.
Xu
,
Y.
Wu
, and
G. A.
Voth
,
J. Phys. Chem. B
111
,
4300
(
2007
).
97.
D.
Wei
,
J.
Truchon
,
S.
Sirois
, and
D.
Salahub
,
J. Chem. Phys.
116
,
6028
(
2002
).
98.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
99.
M. J.
Shultz
,
S.
Aldelli
,
C.
Schnitzer
, and
D.
Simonelli
,
J. Phys. Chem. B
106
,
5313
(
2002
).
100.
S.
Paul
and
A.
Chandra
,
J. Chem. Phys.
123
,
174712
(
2005
);
[PubMed]
S.
Paul
and
A.
Chandra
,
J. Chem. Theory Comput.
1
,
1221
(
2005
).
[PubMed]
101.
S.
Senapati
and
M. L.
Berkowitz
,
Phys. Rev. Lett.
87
,
176101
(
2001
);
[PubMed]
R. S.
Taylor
,
L. X.
Dang
, and
B. C.
Garrett
,
J. Phys. Chem.
100
,
11720
(
1996
).
102.
J. J.
Gilijamse
,
A. J.
Lock
, and
H. J.
Bakker
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
3202
(
2005
).
103.
S.
Vaitheeswaran
,
H.
Yin
,
J. C.
Rasaiah
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
17002
(
2004
);
[PubMed]
C.
Dellago
and
G.
Hummer
,
Phys. Rev. Lett.
97
,
245901
(
2006
).
[PubMed]
104.
K.
Sahu
,
S. K.
Mondal
,
S.
Ghosh
, and
K.
Bhattacharyya
,
Bull. Chem. Soc. Jpn.
80
,
1033
(
2007
).
105.
S.
Li
,
J. R.
Schmidt
,
A.
Piryatinski
,
C. P.
Lawrence
, and
J. L.
Skinner
,
J. Phys. Chem. B
110
,
18933
(
2006
).
106.
Y.
Mu
and
G.
Stock
,
J. Phys. Chem. B
106
,
5294
(
2002
);
R. D.
Gorbunov
,
P. H.
Nguyen
,
M.
Kobus
, and
G.
Stock
,
J. Chem. Phys.
126
,
054509
(
2007
).
[PubMed]
107.
P.
Hamm
,
M.
Lim
,
W. F.
DeGrado
, and
R. M.
Hochstrasser
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
2036
(
1999
).
108.
M. D.
Peraro
,
S.
Raugei
,
P.
Carloni
, and
M. L.
Klein
,
ChemPhysChem
6
,
1715
(
2005
).
You do not currently have access to this content.