Electronic structures of SiC nanoribbons have been studied by spin-polarized first-principles calculations. The armchair nanoribbons are nonmagnetic semiconductors, while the zigzag nanoribbons are magnetic metals. The spin polarization in the zigzag SiC nanoribbons is originated from the unpaired electrons localized on the ribbon edges. Interestingly, the zigzag nanoribbons narrower than 4nm present half-metallic behavior. Without the aid of external field or chemical modification, the metal-free half-metallicity predicted for narrow SiC zigzag nanoribbons opens a facile way for nanomaterial-based spintronics applications.

1.
F.
Khan
and
J.
Broughton
,
Phys. Rev. B
43
,
11754
(
1991
).
2.
Y.
Miyamoto
and
B. D.
Yu
,
Appl. Phys. Lett.
80
,
586
(
2002
).
3.
M.
Menon
,
E.
Richter
,
A.
Mavrandonakis
,
G.
Froudakis
, and
A. N.
Andriotis
,
Phys. Rev. B
69
,
115322
(
2004
).
4.
M.
Zhao
,
Y.
Xia
,
F.
Li
,
R. Q.
Zhang
, and
S. -T.
Lee
,
Phys. Rev. B
71
,
085312
(
2005
).
6.
B.
Baumeier
,
P.
Krüger
, and
J.
Pollmann
,
Phys. Rev. B
76
,
085407
(
2007
).
7.
R. J.
Baierle
,
P.
Piquini
,
L. P.
Neves
, and
R. H.
Miwa
,
Phys. Rev. B
74
,
155425
(
2006
).
8.
R. J.
Baierle
and
R. H.
Miwa
,
Phys. Rev. B
76
,
205410
(
2007
).
9.
X. H.
Sun
,
C. P.
Li
,
W. K.
Wong
,
N. B.
Wong
,
C. S.
Lee
,
S. T.
Lee
, and
B. K.
Teo
,
J. Am. Chem. Soc.
124
,
14464
(
2002
).
10.
G.
Kelner
and
M.
Shur
, in
Properties of Silicon Carbide
, edited by
G. L.
Harris
(
INSPEC, Institution of Electrical Engineers
,
London
,
1995
).
11.
Z.
Pan
,
H. -L.
Lai
,
F. C. K.
Au
,
X.
Duan
,
W.
Zhou
,
W.
Shi
,
N.
Wang
,
C. -S.
Lee
,
N. -B.
Wong
,
S. -T.
Lee
, and
S.
Xie
,
Adv. Mater. (Weinheim, Ger.)
12
,
1186
(
2000
).
12.
Z. C.
Feng
,
A. J.
Mascarenhas
,
W. J.
Choyke
, and
J. A.
Powell
,
J. Appl. Phys.
64
,
3176
(
1988
).
13.
M.
Fujita
,
K.
Wakabayashi
,
K.
Nakada
, and
K.
Kusakabe
,
J. Phys. Soc. Jpn.
65
,
1920
(
1996
).
14.
Y.
Zhang
,
Y.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature (London)
438
,
201
(
2005
).
15.
C.
Berger
,
Z.
Song
,
X.
Li
,
X.
Wu
,
N.
Brown
,
C.
Naud
,
D.
Mayou
,
T.
Li
,
J.
Hass
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
Science
312
,
1191
(
2006
).
16.
Y. W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
97
,
216803
(
2006
).
17.
Y. W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Nature (London)
444
,
347
(
2006
).
18.
O.
Hod
,
V.
Barone
,
J. E.
Peralta
, and
G. E.
Scueria
,
Nano Lett.
7
,
2295
(
2007
).
19.
E. J.
Kan
,
Z.
Li
,
J.
Yang
, and
J. G.
Hou
,
Appl. Phys. Lett.
91
,
243116
(
2007
).
20.
D. E.
Jiang
,
B. G.
Sumpter
, and
S. J.
Dai
,
Chem. Phys.
126
,
134701
(
2007
);
X. F.
Gao
,
Z.
Zhou
, and
Y. L.
Zhao
,
S.
Nagese
,
S. B.
Zhang
, and
Z. F.
Chen
,
J. Phys. Chem. C
112
,
12677
(
2007
).
21.
E. J.
Kan
,
Z.
Li
,
J.
Yang
, and
J. G.
Hou
,
J. Am. Chem. Soc.
130
,
4224
(
2008
).
22.
Z.
Li
,
H. Y.
Qian
,
B. L.
Gu
, and
W. H.
Duan
,
Phys. Rev. Lett.
100
,
206802
(
2008
).
23.
G.
Kresse
and
J.
Hafner
,
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
24.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
25.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
26.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
27.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
28.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
D. J.
Gale
,
J. Chem. Soc., Faraday Trans.
93
,
629
(
1997
).
31.
D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
32.
33.
34.
L.
Pisani
,
J. A.
Chan
,
B.
Montanari
, and
N. M.
Harrison
,
Phys. Rev. B
75
,
064418
(
2007
).
35.
E. -J.
Kan
,
X.
Wu
,
Z.
Li
,
X. C.
Zeng
,
J.
Yang
, and
J. G.
Hou
,
J. Chem. Phys.
129
,
084712
(
2008
).
36.
C. -H.
Park
and
S. G.
Louie
,
Nano Lett.
8
,
2200
(
2008
).
You do not currently have access to this content.