Energy transfer within photosynthetic systems can display quantum effects such as delocalized excitonic transport. Recently, direct evidence of long-lived coherence has been experimentally demonstrated for the dynamics of the Fenna–Matthews–Olson (FMO) protein complex [Engel et al., Nature (London)446, 782 (2007)]. However, the relevance of quantum dynamical processes to the exciton transfer efficiency is to a large extent unknown. Here, we develop a theoretical framework for studying the role of quantum interference effects in energy transfer dynamics of molecular arrays interacting with a thermal bath within the Lindblad formalism. To this end, we generalize continuous-time quantum walks to nonunitary and temperature-dependent dynamics in Liouville space derived from a microscopic Hamiltonian. Different physical effects of coherence and decoherence processes are explored via a universal measure for the energy transfer efficiency and its susceptibility. In particular, we demonstrate that for the FMO complex, an effective interplay between the free Hamiltonian evolution and the thermal fluctuations in the environment leads to a substantial increase in energy transfer efficiency from about 70% to 99%.

1.
R. E.
Blankenship
,
Molecular Mechanism of Photosynthesis
(
Blackwell Science
,
London
,
2002
).
2.
X.
Hu
,
T.
Ritz
,
A.
Damjanović
, and
K. J.
Schulten
,
J. Phys. Chem. B
101
,
3854
(
1997
).
3.
T.
Ritz
,
S.
Park
, and
K.
Schulten
,
J. Phys. Chem. B
105
,
8259
(
2001
).
4.
V. I.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
,
J. Phys. Chem. B
108
,
10363
(
2004
).
5.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
,
J. Phys. Chem. B
109
,
10542
(
2005
).
6.
T.
Förster
, in
Modern Quantum Chemistry, Istanbul Lectures
, edited by
O.
Sinanoglu
(
Academic
,
New York
,
1965
), Vol.
3
, pp.
93
137
.
8.
V.
May
and
O.
Kuhn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley
,
Weinheim
,
2004
).
9.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
10.
M.
Grover
and
R.
Silbey
,
J. Chem. Phys.
54
,
4843
(
1971
).
11.
S.
Rackovsky
and
R.
Silbey
,
Mol. Phys.
25
,
61
(
1973
).
12.
H.
Haken
and
G.
Strobl
,
Z. Phys.
262
,
135
(
1973
).
13.
V. M.
Kenkre
and
R. S.
Knox
,
Phys. Rev. Lett.
33
,
803
(
1974
).
14.
V. M.
Kenkre
and
P.
Reineker
,
Exciton Dynamics in Molecular Crystals and Aggregates
(
Springer
,
Berlin
,
1982
).
15.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
16.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
275
,
355
(
2002
).
17.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
18.
Y. C.
Cheng
and
R. J.
Silbey
,
Phys. Rev. Lett.
96
,
028103
(
2006
).
19.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
J. Phys. Chem. B
111
,
6807
(
2007
).
20.
K. M.
Gaab
and
C. J.
Bardeen
,
J. Chem. Phys.
121
,
7813
(
2004
).
21.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. -K.
Ahn
,
T.
Mancal
,
Y. -C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
22.
H.
Lee
,
Y. -C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
23.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
Reading, MA
,
1964
).
24.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
25.
J.
Klafter
and
R.
Silbey
,
Phys. Lett.
76A
,
143
(
1980
).
26.
Y.
Aharonov
,
L.
Davidovich
, and
N.
Zagury
,
Phys. Rev. A
48
,
1687
(
1993
).
27.
J.
Kempe
,
Contemp. Phys.
44
,
302
(
2003
).
28.
V.
Kendon
,
Math. Struct. Comp. Sci.
17
,
1169
(
2006
).
29.
E.
Farhi
and
S.
Gutmann
,
Phys. Rev. A
58
,
915
(
1998
).
30.
A.
Childs
,
E.
Farhi
, and
S.
Gutmann
,
Quantum Inf. Process.
1
,
35
(
2002
).
31.
D.
Aharonov
,
A.
Ambainis
,
J.
Kempe
, and
U.
Vazirani
, in
Proceedings of the 33th STOC
(
ACM
,
New York
,
2001
), p.
50
.
32.
D. A.
Meyer
,
J. Stat. Phys.
85
,
551
(
1996
).
33.
B. C.
Sanders
,
S. D.
Bartlett
,
B.
Tregenna
, and
P. L.
Knight
,
Phys. Rev. A
67
,
042305
(
2003
);
W.
Dür
,
R.
Raussendorf
,
V. M.
Kendon
, and
H. -J.
Briegel
,
Phys. Rev. A
66
,
052319
(
2002
).
34.
O.
Mülken
,
V.
Bierbaum
, and
A.
Blumen
,
J. Chem. Phys.
124
,
124905
(
2006
).
35.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
36.
L. K.
Grover
,
Phys. Rev. Lett.
79
,
325
(
1997
).
37.
Y.
Li
,
W.
Zhou
,
R. E.
Blankenship
, and
J. P.
Allen
,
J. Mol. Biol.
271
,
456
(
1997
).
38.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
39.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
(
2006
).
40.
H. -P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford Univerity Press
,
New York
,
2002
).
41.
T. G.
Owens
,
S. P.
Webb
,
L.
Mets
,
R. S.
Alberte
, and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
1532
(
1987
).
42.
M. K.
Sener
,
D.
Lu
,
T.
Ritz
,
S.
Park
,
P.
Fromme
, and
K.
Schulten
,
J. Phys. Chem. B
106
,
7948
(
2002
).
43.
M. K.
Sener
,
S.
Park
,
D.
Lu
,
A.
Damjanović
,
T.
Ritz
,
P.
Fromme
, and
K.
Schulten
,
J. Chem. Phys.
120
,
11183
(
2004
).
44.
H.
Carmichael
,
An Open Systems Approach to Quantum Optics
(
Springer-Verlag
,
Berlin
,
1993
).
45.
A.
Olaya-Castro
,
C.
Fan Lee
,
F.
Fassioli Olsen
, and
N. F.
Johnson
, e-print
Phys. Rev. B
78
,
085115
(
2008
).
46.
A.
Nazir
,
B. W.
Lovett
,
S. D.
Barrett
,
J. H.
Reina
, and
G. A. D.
Briggs
,
Phys. Rev. B
71
,
045334
(
2005
).
47.
F.
Müh
,
M.
El-Amine Madjet
,
J.
Adolphs
,
A.
Abdurahman
,
B.
Rabenstein
,
H.
Ishikita
,
E. -W.
Knapp
, and
T.
Renger
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
16862
(
2007
).
48.
P.
Rebentrost
,
M.
Mohseni
, and
A.
Aspuru-Guzik
, e-print arXiv:0806.4725.
49.
P.
Rebentrost
,
M.
Mohseni
,
S.
Lloyd
,
I.
Kassal
, and
A.
Aspuru-Guzik
, e-print arXiv:0807.0929.
50.
M. B.
Plenio
and
S. F.
Huelga
, e-print arXiv:0807.4902.
51.
F. W.
Strauch
, e-print arXiv:0808.3403.
52.
P.
Rebentrost
,
I.
Serban
,
T.
Schulte-Herbrueggen
, and
F. K.
Wilhelm
, e-print arXiv:quant-ph/0612165.
53.
C. A.
Rodriguez-Rosario
and
E. C. G.
Sudarshan
, e-print arXiv:0803.1183.
54.
M.
Mohseni
and
A. T.
Rezakhani
, e-print arXiv:0805.3188.
55.
M.
Christandl
,
N.
Datta
,
A.
Ekert
, and
A. J.
Landahl
,
Phys. Rev. Lett.
92
,
187902
(
2004
).
56.
D. I.
Tsomokos
,
M. B.
Plenio
,
I.
de Vega
, and
S. F.
Huelga
, e-print arXiv:0808.2261v.
57.
J.
Dalibard
,
Y.
Castin
, and
K.
Molmer
,
Phys. Rev. Lett.
68
,
580
(
1992
).
58.
S.
Ohta
,
M.
Nakano
,
R.
Kishi
,
H.
Takahashi
, and
S.
Furukawa
,
Chem. Phys. Lett.
419
,
70
(
2006
).
59.
Z.
He
,
T.
Ishizuka
, and
D. L.
Jiangi
,
Polym. J. (Tokyo, Jpn.)
39
,
889
(
2007
).
You do not currently have access to this content.