The ability of the classical nucleation theory (CNT) and atomistic nucleation theory (ANT) to predict the stationary nucleation rate J of single-component crystals and crystalline monolayers is verified with the aid of numerical and computer simulation data obtained in the scope of the Kossel crystal model. It is found that in both cases CNT significantly overestimates J because it does not account for the work needed to attach an atom to the periphery of the two-dimensional nucleus or to form such a nucleus on the surface of the three-dimensional one. In contrast, ANT is successful in providing a good quantitative description of J, especially for high enough effective binding energy between nearest-neighbor atoms in the crystal and in capturing the existence of extended, nearly linear portions in the dependence of lnJ on the supersaturation s when the values of both s and the binding energy are sufficiently great. However, the ANT prediction about broken linear lnJ versus s dependence is not confirmed by the numerical and simulation results presented. General formulas for the nucleation work, the nucleus size, and the nucleation rate are proposed which are applicable to nucleation of single-component crystals and crystalline monolayers in vapors, solutions, or melts and which correct the respective CNT formulas. The proposed J(s) formula provides a good description of the numerical and simulation data and can justifiably be used up to the supersaturation at which the nucleus becomes monomer. When experimental data for the J(s) dependence are available and the nucleus specific edge and surface energies are unknown parameters, the proposed J(s) formula can be employed for estimation of these energies even if the nucleus is constituted of a few atoms only.

1.
Author’s translation of “Man könnte die Frage stellen, ob es sinnvoll ist, Betrachtungen an derartigen schematisierten Modellen anzustellen. Darauf muss geantwortet werden, dass das prinzipiell Wichtige bei den Vorgangen das Wachstums und Auflösens an Kristallen auch am einfachsten Modell zu erkennen sein muss, ganz unabhängig davon, ob das gedanklich konstruierte Modell in der Natur realisiert ist oder nicht, wenn es nur frei von inneren Widersprüchen ist.” (Ref. 2, p. 104).
2.
I. N.
Stranski
and
R.
Kaischew
,
Z. Phys. Chem. Abt. B
26
,
100
(
1934
).
3.
R.
Kaischew
and
I. N.
Stranski
,
Z. Phys. Chem. Abt. B
26
,
114
(
1934
).
4.
I. N.
Stranski
and
R.
Kaischew
,
Z. Phys. Chem. Abt. B
26
,
312
(
1934
).
5.
R.
Kaischew
and
I. N.
Stranski
,
Z. Phys. Chem. Abt. B
26
,
317
(
1934
).
6.
R.
Kaischew
and
I. N.
Stranski
,
Z. Phys. Chem. Abt. A
170
,
295
(
1934
).
7.
K.
Huang
,
Statistical Mechanics
(
Wiley
,
New York
,
1963
).
8.
R.
Becker
and
W.
Döring
,
Ann. Phys. (Leipzig)
24
,
719
(
1935
).
9.
M.
Volmer
,
Kinetik der Phasenbildung
(
Steinkopff
,
Dresden
,
1939
).
10.
G. H.
Gilmer
and
P.
Bennema
,
J. Appl. Phys.
43
,
1347
(
1972
).
11.
C.
van Leeuwen
,
R.
van Rosmalen
, and
P.
Bennema
,
Surf. Sci.
44
,
213
(
1974
).
12.
D.
Kashchiev
,
J. P.
van der Eerden
, and
C.
van Leeuwen
,
J. Cryst. Growth
40
,
47
(
1977
).
13.
J. D.
Weeks
and
G. H.
Gilmer
,
Adv. Chem. Phys.
40
,
157
(
1979
).
14.
R. A.
Ramos
,
P. A.
Rikvold
, and
M. A.
Novotny
,
Phys. Rev. B
59
,
9053
(
1999
).
15.
P. -M.
Lam
,
D.
Bayayoko
, and
X. -Y.
Hu
,
Surf. Sci.
429
,
161
(
1999
).
16.
V. A.
Shneidman
,
K. A.
Jackson
, and
K. M.
Beatty
,
J. Chem. Phys.
111
,
6932
(
1999
).
17.
V. A.
Shneidman
,
K. A.
Jackson
, and
K. M.
Beatty
,
J. Cryst. Growth
212
,
564
(
2000
).
18.
S.
Wonczak
,
R.
Strey
, and
D.
Stauffer
,
J. Chem. Phys.
113
,
1976
(
2000
).
19.
J. H.
ter Horst
and
P. J.
Jansens
,
Surf. Sci.
574
,
77
(
2005
).
20.
J. H.
ter Horst
and
D.
Kashchiev
,
J. Chem. Phys.
123
,
114507
(
2005
).
21.
K.
Brendel
,
G. T.
Barkema
, and
H.
van Beijeren
,
AIP Conf. Proc.
800
,
39
(
2005
).
22.
K.
Brendel
,
G. T.
Barkema
, and
H.
van Beijeren
,
Phys. Rev. E
71
,
031601
(
2005
).
23.
V. M.
Kaganer
,
K. H.
Ploog
, and
K. K.
Sabelfeld
,
Phys. Rev. B
73
,
115425
(
2006
).
24.
V. M.
Kaganer
,
W.
Braun
, and
K. K.
Sabelfeld
,
Phys. Rev. B
76
,
075415
(
2007
).
25.
B. J.
Kooi
,
Phys. Rev. B
77
,
024303
(
2008
).
26.
J. H.
ter Horst
and
D.
Kashchiev
,
J. Phys. Chem. B
112
,
8614
(
2008
).
27.
R.
Kaischew
,
Acta Phys. Acad. Sci. Hung.
8
,
75
(
1957
).
28.
R.
Kaischew
,
Z. Elektrochem.
61
,
35
(
1957
).
29.
A. E.
Nielsen
,
Kinetics of Precipitation
(
Pergamon
,
Oxford
,
1964
).
30.
A. G.
Walton
, in
Nucleation
, edited by
A. C.
Zettlemoyer
(
Dekker
,
New York
,
1969
), p.
225
.
31.
D.
Kashchiev
,
Nucleation: Basic Theory with Applications
(
Butterworth-Heinemann
,
Oxford
,
2000
).
32.
D.
Walton
,
J. Chem. Phys.
37
,
2182
(
1962
).
33.
D.
Walton
, in
Nucleation
, edited by
A. C.
Zettlemoyer
(
Dekker
,
New York
,
1969
), p.
379
.
34.
36.
B.
Lewis
, in
Crystal Growth
, edited by
B. R.
Pamplin
(
Pergamon
,
Oxford
,
1975
), p.
12
.
37.
B.
Lewis
and
J. C.
Anderson
,
Nucleation and Growth of Thin Films
(
Academic
,
New York
,
1978
).
38.
S.
Stoyanov
, in
Current Topics in Materials Science
, edited by
E.
Kaldis
(
North-Holland
,
Amsterdam
,
1979
), Vol.
3
, p.
421
.
39.
A.
Milchev
,
S.
Stoyanov
, and
R.
Kaischew
,
Thin Solid Films
22
,
255
(
1974
).
40.
A.
Milchev
,
S.
Stoyanov
, and
R.
Kaischew
,
Thin Solid Films
22
,
267
(
1974
).
41.
42.
A.
Milchev
,
Electrocrystallization: Fundamentals of Nucleation and Growth
(
Kluwer
,
Boston
,
2002
).
43.
V. A.
Shneidman
and
G. M.
Nita
,
Phys. Rev. Lett.
89
,
025701
(
2002
).
44.
V. A.
Shneidman
and
G. M.
Nita
,
Phys. Rev. E
68
,
021605
(
2003
).
45.
V. A.
Shneidman
and
G. M.
Nita
,
J. Chem. Phys.
121
,
11232
(
2004
).
46.
V. A.
Shneidman
and
G. M.
Nita
,
Phys. Rev. Lett.
97
,
065703
(
2006
).
47.
V. A.
Shneidman
,
J. Stat. Phys.
112
,
293
(
2003
).
48.
V. A.
Shneidman
,
New J. Phys.
7
,
12
(
2005
).
49.
E. J.
Neves
and
R. H.
Schonmann
,
Commun. Math. Phys.
137
,
209
(
1991
).
50.
V. A.
Shneidman
,
Phys. Rev. Lett.
95
,
115701
(
2005
).
51.
L.
Farkas
,
Z. Phys. Chem.
125
,
236
(
1927
).
52.
M.
Blander
and
J. L.
Katz
,
J. Stat. Phys.
4
,
55
(
1972
).
53.
S. L.
Girshick
and
C. -P.
Chiu
,
J. Chem. Phys.
93
,
1273
(
1990
).
54.
S. L.
Girshick
,
J. Chem. Phys.
94
,
826
(
1991
).
55.
G.
Wilemski
,
J. Chem. Phys.
103
,
1119
(
1995
).
56.
I. N.
Stranski
,
Ber. Wien. Akad.
145
,
840
(
1936
).
57.
R.
Kaischew
, in
Rost Kristallov
, edited by
N. N.
Sheftal
(
Nauka
,
Moscow
,
1965
), Vol.
5
, p.
45
.
58.
D.
Kashchiev
and
V.
Bostanov
,
J. Chem. Phys.
127
,
244709
(
2007
).
59.
D.
Kashchiev
,
J. Chem. Phys.
76
,
5098
(
1982
).
60.
D.
Kashchiev
,
J. Chem. Phys.
125
,
014502
(
2006
).
61.
H. J.
Leamy
,
G. H.
Gilmer
, and
K. A.
Jackson
, in
Surface Physics of Materials
, edited by
J. B.
Blakeley
(
Academic
,
New York
,
1975
), Vol.
I
, p.
121
.
62.
X. -M.
Bai
and
M.
Li
,
J. Chem. Phys.
122
,
224510
(
2005
).
63.
X. -M.
Bai
and
M.
Li
,
J. Chem. Phys.
124
,
124707
(
2006
).
64.
J. -M.
Leyssale
,
J.
Delhommelle
, and
C.
Millot
,
J. Chem. Phys.
127
,
044504
(
2007
).
65.
The reader is invited to obtain the solution (if any) of this problem.
You do not currently have access to this content.