We uncovered the underlying energy landscape of the mitogen-activated protein kinases signal transduction cellular network by exploring the statistical natures of the Brownian dynamical trajectories. We introduce a dimensionless quantity: The robustness ratio of energy gap versus local roughness to measure the global topography of the underlying landscape. A high robustness ratio implies funneled landscape. The landscape is quite robust against environmental fluctuations and variants of the intrinsic chemical reaction rates. As the environmental fluctuations or the variances of the inherent chemical reaction rates increase further more, the landscape becomes less robust and more flatter. We also show that more robust network has less dissipation costs. Our approach is quite general and can be applied to other cellular networks.

1.
E. H.
Davidson
,
J. P.
Rast
,
P.
Oliveri
,
A.
Ransick
,
C.
Calestani
,
C. H.
Yuh
,
T.
Minokawa
,
G.
Amore
,
V.
Hinman
,
C.
Arenas-Mena
,
O.
Otim
,
C. T.
Brown
,
C. B.
Livi
,
P. Y.
Lee
,
R.
Revilla
,
A. G.
Rust
,
Z.
Pan
,
M. J.
Schilstra
,
P. J.
Clarke
,
M. I.
Arnone
,
L.
Rowen
,
R. A.
Cameron
,
D. R.
McClay
,
L.
Hood
, and
H.
Bolouri
Science
295
,
1669
(
2002
).
2.
C. Y.
Huang
and
J. E.
Ferrell
, Jr.
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
10078
(
1996
).
3.
B. N.
Kholodenko
,
Eur. J. Biochem.
267
,
1583
(
2000
).
4.
T.
Ideker
,
V.
Thorsson
,
J. A.
Ranish
,
R.
Christmas
,
J.
Buhler
,
J. K.
Eng
,
R.
Bumgarner
,
D. R.
Goodlett
,
R.
Aebersold
, and
L.
Hood
,
Science
292
,
929
(
2001
).
5.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A. L.
Barabasi
,
Nature (London)
407
,
651
(
2000
).
6.
A. L.
Barabasi
and
E.
Bonabeau
,
Sci. Am.
288
(
5
),
60
(
2003
).
7.
S.
Maslov
and
K.
Sneppen
,
Science
296
,
910
(
2002
).
8.
R.
Milo
,
S.
Shen-Orr
,
S.
Itzkovitz
,
N.
Kashtan
,
D.
Chklovskii
, and
U.
Alon
,
Science
298
,
824
(
2002
).
9.
J.
Stelling
,
U.
Sauer
,
Z.
Szallasi
,
F. J.
Doyle
 III
, and
J.
Doyle
,
Cell
118
,
675
(
2004
).
10.
J. J.
Tyson
,
K.
Chen
, and
B.
Novak
,
Nat. Rev. Mol. Cell Biol.
2
,
908
(
2001
).
11.
M.
Sasai
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
2374
(
2003
).
12.
T.
Lu
,
J.
Hasty
, and
P. G.
Wolynes
,
Biophys. J.
91
,
84
(
2006
).
13.
A.
Walczak
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
18926
(
2005
).
14.
W.
Bialek
, in
Stability and Noise in Biochemical Switches
,
Advances in Neural Information Processing
Vol.
13
, edited by
T. K.
Leen
,
T. G.
Dietterich
, and
V.
Tresp
(
MIT Press
,
Cambridge
,
2001
), pp.
103
109
.
15.
M.
Acar
,
A.
Becskei
, and
A. V.
Oudenaarden
,
Nature (London)
435
,
228
(
2005
).
16.
F.
Li
,
T.
Long
,
Y.
Lu
,
Q.
Ouyang
, and
C.
Tang
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
4781
(
2004
).
17.
P.
Ao
,
J. Phys. A
37
,
L25CL30
(
2004
).
18.
X. M.
Zhu
,
L.
Lan
,
L.
Hood
, and
P.
Ao
,
Funct. Integr. Genomics
4
,
188
(
2004
).
19.
H.
Qian
and
D. A.
Bear
,
Biophys. Chem.
114
,
213
(
2005
).
20.
H.
Qian
and
T. C.
Reluga
,
Phys. Rev. Lett.
94
,
028101
(
2005
).
21.
J. E. M.
Hornos
,
D.
Schultz
,
G. C. P.
Innocentini
,
J.
Wang
,
A. M.
Walczak
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
Phys. Rev. E
72
,
051907
(
2005
).
22.
J.
Wang
,
B.
Huang
,
X. F.
Xia
, and
Z. R.
Sun
,
Biophys. J. Lett.
91
,
L54
(
2006
).
23.
J.
Wang
,
B.
Huang
,
X. F.
Xia
, and
Z. R.
Sun
,
PLOS Comput. Biol.
2
,
1385
(
2006
).
24.
B.
Han
and
J.
Wang
,
Biophys. J.
92
,
3755
(
2007
).
25.
K. Y.
Kim
and
J.
Wang
,
PLOS Comput. Biol.
3
,
e60
(
2007
).
26.
B.
Han
and
B.
Wang
,
Phys. Rev. E
77
,
031922
(
2008
).
27.
D.
Lepzelter
and
J.
Wang
,
Phys. Rev. E
77
,
041917
(
2008
).
28.
S.
Lapidus
,
B.
Han
, and
J.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
6039
(
2008
).
29.
J.
Wang
,
L.
Xu
, and
E. K.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
12271
(
2008
).
30.
H. H.
McAdams
and
A.
Arkin
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
814
(
1997
).
31.
M. B.
Elowitz
and
S.
Leibler
,
Nature (London)
403
,
335
(
2000
).
32.
P. S.
Swain
,
M. B.
Elowitz
, and
E. D.
Siggia
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
12795
(
2002
).
33.
M.
Thattai
and
A.
van Oudenaarden
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
8614
(
2001
).
34.
J. M. G.
Vilar
,
C. C.
Guet
, and
S.
Leibler
,
J. Cell Biol.
161
,
471
(
2003
).
35.
J.
Paulsson
,
Nature (London)
427
,
415
(
2004
).
36.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
Amsterdam
,
1992
), p.
480
.
37.
R. H.
Austin
,
K.
Beeson
,
L.
Eisenstein
,
H.
Frauenfelder
, and
I. C.
Gunsalus
,
Biochemistry
14
,
5355
(
1975
).
38.
H.
Frauenfelder
,
S. G.
Sligar
, and
P. G.
Wolynes
,
Science
254
,
1598
(
1991
).
39.
G. B.
Arfken
and
H.
Weber
,
Mathematical Methods for Physicists
(
Academic
,
San Diego
,
2005
), pp.
95
101
.
40.
R. P.
Kanwal
,
Int. J. Eng. Sci.
9
,
375
(
1971
).
41.
H.
Haken
,
Advanced Synergetics
(
Springer
,
Berlin
,
1987
).
42.
R.
Graham
, in
Noise in Nonlinear Dynamical Systems
edited by
F.
Moss
 et al. (
Cambridege University Press
,
Cambridge
,
1989
), Vol.
1
, pp.
225
278
.
43.
44.
R.
Bott
and
L. W.
Tu
,
Differential Forms in Algebraic Topology
(
Springer-Verlag
,
Berlin
,
1982
).
45.
46.
P. G.
Wolynes
,
J. N.
Onuchic
, and
D.
Thrumalai
,
Science
267
,
1619
(
1995
).
47.
J.
Wang
and
G. M.
Verkhivker
,
Phys. Rev. Lett.
90
,
188101
(
2003
).
48.
N. V.
Torres
,
Biotechnol. Bioeng.
44
,
104
(
1994
).
You do not currently have access to this content.