Density functional theory and slab models are employed to study NO molecule adsorption and reaction on clean and atomic oxygen precovered Au(111) surfaces. While clean Au(111) surface is catalytically inert and can only weakly adsorb NO, an atomic oxygen precovered Au(111) surface is found to be very active to NO. On the clean surface, NO prefers to bond at the onefold on-top surface site with a tilted geometry. On 0.33 ML (monolayer) oxygen precovered surface NO reacts with chemisorbed oxygen to form chemisorbed NO2 by conquering a small energy barrier about 0.18 eV, and the desorption energy of NO2 is 0.64 eV. On 1.0 ML oxygen coverage surface, no barrier is found while NO reacts with precovered oxygen. The desorption energy of NO2 is 0.03 eV. The desorption of NO2 is the rate determining step on both surfaces and the overall reaction barriers are 0.64 and 0.03 eV, respectively. The activation energies depend on the initial coverage of oxygen, which compare favorably with experiments on Au surface with different oxygen coverages.

1.
S.
Lee
,
C. Y.
Fan
,
T. P.
Wu
, and
S. L.
Anderson
,
J. Am. Chem. Soc.
126
,
5682
(
2004
).
2.
S.
Lee
,
C. Y.
Fan
,
T. P.
Wu
, and
S. L.
Anderson
,
J. Phys. Chem. B
109
,
11340
(
2005
).
3.
F.
Boccuzzi
and
A.
Chiorino
,
J. Phys. Chem. B
104
,
5414
(
2000
).
4.
V. A.
Bondzie
,
S. C.
Parker
, and
C. T.
Campbell
,
Catal. Lett.
63
,
143
(
1999
).
5.
M.
Daté
,
Y.
Ichihashi
,
A.
Chiorino
,
F.
Bocucuzzi
, and
M.
Haruta
,
Catal. Today
72
,
89
(
2002
).
8.
T. S.
Kim
,
J. D.
Stiehl
,
C. T.
Reeves
,
R. J.
Meyer
, and
C. B.
Mullins
,
J. Am. Chem. Soc.
125
,
2018
(
2003
).
9.
A.
Ueda
and
M.
Haruta
,
Gold Bull.
32
,
3
(
1999
).
10.
M.
Valden
,
X.
Lai
, and
D. W.
Goodman
,
Science
281
,
1647
(
1998
).
11.
S. M.
McClure
,
T. S.
Kim
,
J. D.
Stiehl
,
P. L.
Tanaka
, and
C. B.
Mullins
,
J. Phys. Chem. B
108
,
17952
(
2004
).
12.
Z. P.
Liu
and
P.
Hu
,
J. Am. Chem. Soc.
124
,
14770
(
2002
).
13.
M. S.
Chen
,
D.
Kumar
,
C. W.
Yi
, and
D. W.
Goodman
,
Science
310
,
291
(
2005
).
14.
N.
Saliba
,
D. H.
Parker
, and
B. E.
Koel
,
Surf. Sci.
410
,
270
(
1998
).
15.
M. A.
Lagaza
,
D. T.
Wichham
,
D. H.
Parker
,
G. N.
Kastanas
, and
B. E.
Koel
,
ACS Symp. Ser.
523
,
90
(
1993
).
16.
M. E.
Bartram
and
B. E.
Koel
,
Surf. Sci.
213
,
137
(
1989
).
17.
J.
Wang
and
B. E.
Koel
,
J. Phys. Chem. A
102
,
8573
(
1998
).
18.
D.
Torres
,
S.
González
,
K. M.
Neyman
, and
F.
Illas
,
Chem. Phys. Lett.
422
,
412
(
2006
).
19.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
20.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
21.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
22.
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
23.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
24.
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
25.
M.
Mavrikakis
,
P.
Stoltze
, and
J. K.
Nørskov
,
Catal. Lett.
64
,
101
(
2000
).
26.
A.
Bilić
,
J. T.
Reimers
,
N. S.
Hush
, and
J.
Hafner
,
J. Chem. Phys.
116
,
8981
(
2002
).
27.
PDF-2 Database, Datasets 1-48, Release, ICDD, Newton Square, PA,
1998
, pp.
38
1420
.
28.
M. C.
Vargas
,
P.
Giannozzi
,
A.
Selloni
, and
G.
Scoles
,
J. Phys. Chem. B
105
,
9509
(
2001
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
In the calculation, only the molecules we are interested in are relaxed. Finite differences are used to calculated the Hessian matrix and then the harmonic vibrational frequencies are computed by diagonalizing the mass-weighted second-derivative matrix F (the elements of F are given by Fij=(1/mimj)(2E/qiqj), the square roots of the eigenvalues of F are the harmonic frequencies).
31.
K.
Nakamoto
,
Infrared and Raman Spectra of Inorganic and Coordination Compounds
, 4th ed. (
Wiley
,
New York
,
1997
).
32.
A.
Bogicevic
and
K. C.
Hass
,
Surf. Sci. Lett.
506
,
L237
(
2002
).
33.
H.
Aizawa
,
Y.
Morikawa
,
S.
Tsuneyuki
,
K.
Fukutani
, and
T.
Ohno
,
Surf. Sci.
514
,
394
(
2002
).
34.
D.
Loffreda
,
D.
Simon
, and
P.
Sautet
,
Chem. Phys. Lett.
291
,
15
(
1998
).
35.
A.
Gil
,
A.
Clotet
,
J. M.
Ricart
,
G.
Kresse
,
M. C.
Herández
,
N.
Rösch
, and
P.
Sautet
,
Surf. Sci.
530
,
71
(
2003
).
36.
Y.
Wang
,
S.
de Gironcoli
,
N. S.
Hush
, and
J. R.
Reimers
,
J. Am. Chem. Soc.
129
,
10402
(
2007
).
37.
J. F.
Zhu
,
M.
Kinne
,
T.
Duhrmann
,
B.
Tränkenschuh
, and
R.
Denecke
,
Surf. Sci.
547
,
410
(
2003
).
38.
J. M.
Gottfried
,
K. J.
Schmidt
,
S. L. M.
Schroeder
, and
K.
Christmann
,
Surf. Sci.
511
,
65
(
2002
).
39.
X. Y.
Deng
,
B. K.
Min
,
A.
Guloy
, and
C. M.
Friend
,
J. Am. Chem. Soc.
127
,
9267
(
2005
).
40.
J.
Chevrier
,
L.
Huang
,
P.
Zeppenfeld
, and
G.
Comsa
,
Surf. Sci.
355
,
1
(
1996
).
41.
L.
Huang
,
P.
Zeppenfeld
,
J.
Chevrier
, and
G.
Comsa
,
Surf. Sci.
352–354
,
285
(
1996
).
42.
J.
Cao
,
N.
Wu
,
S.
Qi
,
K.
Feng
, and
M. S.
Zei
,
Chin. Phys. Lett.
6
,
92
(
1989
).
43.
W. X.
Li
,
C.
Stampfl
, and
M.
Scheffler
,
Phys. Rev. B
65
,
075407
(
2002
).
44.
X.
Lu
,
X.
Xu
,
N. Q.
Wang
, and
Q. E.
Zhang
,
J. Phys. Chem. A
103
,
10969
(
1999
).
45.
G.
Henkelman
,
G.
Jóhannesson
, and
H.
Jónsson
, in
Progress on Theoretical Chemistry and Physics
, edited by
S. D.
Schwartz
(
Kluwar
,
Dordrecht
,
2000
), p.
272
.
46.
M. H. P.
Ardebili
,
R.
Grice
,
M. E.
Hodgson
,
C. J.
Hughes
, and
J. C.
Whitehead
,
J. Chem. Soc., Faraday Trans.
88
,
1377
(
1992
).
47.
S.
Ovesson
,
B. I.
Lundqvist
,
W. F.
Scheider
, and
A.
Bogicevic
,
Phys. Rev. B
71
,
115406
(
2005
).
48.
A.
Alavi
,
P. J.
Hu
,
T.
Deutsch
,
P. L.
Silvestrelli
, and
J.
Hutter
,
Phys. Rev. Lett.
80
,
3650
(
1998
).
You do not currently have access to this content.