We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA) is important for improving the performance of TDDFT away from the equilibrium geometry. This observation is supported by the present TDDFT TDA/SH calculations which successfully confirm the main experimentally derived Gomer-Noyes mechanism for the photochemical CO ring opening of oxirane and, in addition, provide important state-specific information not easily accessible from experiments. In particular, we find that, while one of the lowest two excited states is photochemically relatively inert, excitation into the other excited state leads predominantly to rapid ring opening, cyclic-C2H4OCH2CH2O. This is followed by hopping to the electronic ground state where hot (4000K) dynamics leads to further reactions, namely, CH2CH2OCH3CHOCH3+CHO and CH4+CO. We note that, in the dynamics, we are not limited to following minimum energy pathways and several surface hops may actually be needed before products are finally reached. The performance of different functionals is then assessed by comparison of TDDFT and diffusion Monte Carlo potential energy curves along a typical TDDFT TDA/SH reaction path. Finally, although true (S0,S1) conical intersections are expected to be absent in adiabatic TDDFT, we show that the TDDFT TDA is able to approximate a conical intersection in this system.

1.
M. E.
Casida
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
Singapore
,
World Scientific
,
1995
), p.
155
.
2.
C.
Jamorski
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
104
,
5134
(
1996
).
3.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
4.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
5.
M. A. L.
Marques
,
C. A.
Ullrich
,
F.
Nogueira
,
A.
Rubio
,
K.
Burke
, and
E. K. U.
Gross
, eds.,
Lecture Notes of Physics
(
Springer
,
Berlin
,
2006
).
6.
A.
Dreuw
,
J.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
7.
M.
Chachisville
and
A. H.
Zewail
,
J. Phys. Chem. A
103
,
7408
(
1999
).
8.
J.
Danielsson
,
J.
Ulicny
, and
A.
Laaksonen
,
J. Am. Chem. Soc.
123
,
9817
(
2001
).
9.
E. W.-G.
Diau
,
C.
Kötting
, and
A. H.
Zewail
,
ChemPhysChem
2
,
273
(
2001
).
10.
E. W.-G.
Diau
,
C.
Kötting
, and
A. H.
Zewail
,
ChemPhysChem
2
,
294
(
2001
).
11.
E. W.-G.
Diau
,
C.
Kötting
,
T. I.
Sølling
, and
A. H.
Zewail
,
ChemPhysChem
3
,
57
(
2002
).
12.
T. I.
Sølling
,
E. W.-G.
Diau
,
C.
Kötting
,
S. D.
Feyter
, and
A. H.
Zewail
,
ChemPhysChem
3
,
79
(
2002
).
13.
G.
Orlova
,
J. D.
Goddard
, and
L. Y.
Brovko
,
J. Am. Chem. Soc.
125
,
6962
(
2002
).
14.
E. W. G.
Diau
and
A. H.
Zewail
,
ChemPhysChem
4
,
445
(
2003
).
15.
J.
Llano
,
J.
Raber
, and
L. A.
Eriksson
,
J. Photochem. Photobiol., A
154
,
235
(
2003
).
16.
D.
Rappoport
and
F.
Furche
,
J. Am. Chem. Soc.
126
,
1277
(
2004
).
17.
J.
Černý
,
V.
Špirko
,
M.
Mons
,
P.
Hobza
, and
D.
Nachtigallová
,
Phys. Chem. Chem. Phys.
8
,
3059
(
2006
).
18.
K. Q. K.
Musa
and
L.
Eriksson
,
J. Phys. Chem. B
111
,
13345
(
2007
).
19.
M. E.
Casida
, in
Accurate Description of Low-Lying Molecular States and Potential Energy Surfaces
,
ACS Symposium Series 828
, edited by
M. R.
Hoffmann
and
K. G.
Dyall
(
ACS
,
Washington, D.C.
,
2002
).
20.
J.
Michl
and
V.
Bonačič-Koutecký
,
Electronic Aspects of Organic Photochemistry
(
Wiley
,
New York
,
1990
).
21.
F.
Cordova
,
L. J.
Doriol
,
A.
Ipatov
,
M. E.
Casida
,
C.
Filippi
, and
A.
Vela
,
J. Chem. Phys.
127
,
164111
(
2007
).
22.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
23.
M. E.
Casida
,
J. Chem. Phys.
122
,
054111
(
2005
).
24.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
Martinez
,
Mol. Phys.
104
,
1039
(
2006
).
25.
M. E.
Casida
,
F.
Gutierrez
,
J.
Guan
,
F.-X.
Gadea
,
D.
Salahub
, and
J.-P.
Daudey
,
J. Chem. Phys.
113
,
7062
(
2000
).
26.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
27.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
28.
J. C.
Tully
, in
Modern Methods for Multidimensional Dynamics Computations in Chemistry
, edited by
D. L.
Thompson
(
Singapore
,
World Scientific
,
1998
).
29.
K.
Drukker
,
J. Comput. Phys.
153
,
225
(
1999
).
30.
M.
Bargheer
,
A.
Cohen
,
R. B.
Gerber
,
M.
Guhr
,
M. V.
Korolkov
,
J.
Manz
,
M. Y.
Niv
,
M.
Schröder
, and
N.
Schwentner
,
J. Phys. Chem. A
111
,
9573
(
2007
).
31.
G.
Granucci
and
M.
Persico
,
Theor. Chem. Acc.
117
,
1131
(
2007
).
32.
P. R. L.
Markwick
and
N. L.
Doltsinis
,
J. Chem. Phys.
126
,
175102
(
2007
).
33.
G.
Zechmann
,
M.
Barbatti
,
H.
Lischka
,
J.
Pittner
, and
V.
Bonacic-Koutecky
,
Chem. Phys. Lett.
418
,
377
(
2006
).
34.
H.
Langer
,
N. L.
Doltsinis
, and
D.
Marx
,
ChemPhysChem
6
,
1734
(
2005
).
35.
Z. W.
Qu
,
H.
Zhu
,
S. Y.
Grebenshchikov
, and
R.
Schinke
,
J. Chem. Phys.
122
,
191102
(
2005
).
36.
M.
Barbatti
,
M.
Ruckenbauer
, and
H.
Lischka
,
J. Chem. Phys.
122
,
174307
(
2005
).
37.
M.
Barbatti
,
G.
Granucci
,
M.
Persico
, and
H.
Lischka
,
Chem. Phys. Lett.
401
,
276
(
2005
).
38.
N.
Winter
and
I.
Benjamin
,
J. Chem. Phys.
121
,
2253
(
2004
).
39.
C.
Ciminelli
,
G.
Granucci
, and
M.
Persico
,
Chem.-Eur. J.
10
,
2327
(
2004
).
40.
N. L.
Doltsinis
and
D.
Marx
,
Phys. Rev. Lett.
88
,
166402
(
2002
).
41.
P.
Cattaneo
and
N.
Persico
,
J. Am. Chem. Soc.
123
,
7638
(
2001
).
42.
C.
Collaveri
,
G.
Granucci
,
M.
Persico
, and
A.
Toniolo
,
J. Chem. Phys.
115
,
1251
(
2001
).
43.
N. L.
Doltsinis
and
D.
Marx
,
J. Theor. Comput. Chem.
1
,
319
(
2002
).
44.
C. V.
Caillie
and
R. D.
Amos
,
Chem. Phys. Lett.
308
,
249
(
1999
).
45.
C. V.
Caillie
and
R. D.
Amos
,
Chem. Phys. Lett.
317
,
159
(
2000
).
46.
F.
Furche
and
R.
Ahlrichs
,
J. Chem. Phys.
117
,
7433
(
2002
).
47.
J.
Hutter
,
J. Chem. Phys.
118
,
3928
(
2003
).
48.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
122
,
064105
(
2005
).
49.
N. L.
Doltsinis
and
D. S.
Kosov
,
J. Chem. Phys.
122
,
144101
(
2005
).
50.
G.
Scalmani
,
M. J.
Frisch
,
B.
Mennucci
,
J.
Tomasi
,
R.
Cammi
, and
V.
Barone
,
J. Chem. Phys.
124
,
094107
(
2006
).
51.
I.
Tavernelli
,
U. F.
Röhrig
, and
U.
Rothlisberger
,
Mol. Phys.
103
,
963
(
2005
).
52.
M. E.
Moret
,
E.
Tapavicza
,
L.
Guidoni
,
U. F.
Röhrig
,
M.
Sulpizi
,
I.
Tavernelli
, and
U.
Rothlisberger
,
Chimia
59
,
493
(
2005
).
53.
S. R.
Mercier
,
O. V.
Boyarkin
,
A.
Kamariotis
,
M.
Guglielmi
,
I.
Tavernelli
,
M.
Cascella
,
U.
Rothlisberger
, and
T.
Rizzo
,
J. Am. Chem. Soc.
128
,
16938
(
2006
).
54.
C. F.
Craig
,
W. R.
Duncan
, and
O. V.
Prezhdo
,
Phys. Rev. Lett.
95
,
163001
(
2005
).
55.
E.
Tapavicza
,
I.
Tavernelli
, and
U.
Rothlisberger
,
Phys. Rev. Lett.
98
,
023001
(
2007
).
56.
U.
Werner
,
R.
Mitrić
,
T.
Suzuki
, and
V.
Bonačić-Koutecký
,
Chem. Phys.
349
,
319
(
2008
).
57.
E.
Gomer
and
J. W. A.
Noyes
,
J. Am. Chem. Soc.
72
,
101
(
1950
).
58.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
59.
F.
Schautz
and
C.
Filippi
,
J. Chem. Phys.
120
,
10931
(
2004
).
60.
F.
Schautz
,
F.
Buda
, and
C.
Filippi
,
J. Chem. Phys.
121
,
5836
(
2004
).
61.
Molecular Electronic-Structure Theory
, edited by
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
(
Wiley
,
England
,
2000
).
62.
L. D.
Landau
,
Phys. Z. Sowjetunion
2
,
46
(
1932
).
63.
C.
Zener
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
64.
E. C. G.
Stueckelberg
,
Helv. Phys. Acta
5
,
369
(
1932
).
65.
C.
Wittig
,
J. Phys. Chem. B
109
,
8428
(
2005
).
66.
G. A.
Jones
,
B. K.
Carpenter
, and
M. N.
Paddon-Row
,
J. Am. Chem. Soc.
120
,
5499
(
1990
).
67.
V.
Chernyak
and
S.
Mukamel
,
J. Chem. Phys.
112
,
3572
(
2000
).
68.
R.
Baer
,
Chem. Phys. Lett.
364
,
75
(
2002
).
69.
C. P.
Hu
,
H.
Hirai
, and
O.
Sugino
,
J. Chem. Phys.
127
,
064103
(
2007
).
70.
C.
Hu
,
H.
Hirai
, and
O.
Sugino
,
J. Chem. Phys.
128
,
154111
(
2008
).
71.
M.
Kawasaki
,
T.
Ibuki
,
M.
Iwasaki
, and
Y.
Takezaki
,
J. Chem. Phys.
59
,
2076
(
1973
).
72.
CPMD
, Version 3.10.0 IBM Corp.,
1990–2006
, http://www.cpmd.org. (Copyright MPI für Festkorperforschung Stuttgart, 1997—2001).
73.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
74.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
75.
K.
Kasha
,
Discuss. Faraday Soc.
9
,
14
(
1950
).
76.
B.
Bigot
,
A.
Sevin
, and
A.
Devaquet
,
J. Am. Chem. Soc.
101
,
1095
(
1979
).
77.
A.
Joshi
,
X. Q.
You
,
T. A.
Barckholtz
, and
H.
Wang
,
J. Phys. Chem. A
109
,
8016
(
2005
).
78.
X.
Yang
,
S.
Maeda
, and
K.
Ohno
,
J. Phys. Chem. A
111
,
5099
(
2007
).
79.
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Phys. Chem. A
111
,
8282
(
2007
).
80.
B. C.
Roquitte
,
J. Phys. Chem.
70
,
2699
(
1981
).
81.
C.
Wesdemiotis
,
B.
Leyh
,
A.
Fura
, and
F. W.
Mclafferty
,
J. Am. Chem. Soc.
112
,
8655
(
1990
).
82.
A.
Sandoski
and
J. J.
BelBruno
,
J. Phys. Org. Chem.
12
,
681
(
1999
).
83.
C. J.
Umrigar
and
C.
Filippi
, A QMC program package (http://www.lorentz.leidenuniv.nl/-filippi/champ.html).
84.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
126
,
234105
(
2007
).
85.
R.
Ahlrichs
,
M.
Bar
,
M.
Haser
,
H.
Horn
, and
C.
Kolmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
86.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
87.
R.
Vanleeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
88.
P. R. T.
Schipper
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
112
,
1344
(
2000
).
89.
T. H. J.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
90.
R. A.
Kendall
,
T.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
91.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
92.
T. K.
Liu
and
A. B. F.
Duncan
,
J. Chem. Phys.
17
,
241
(
1949
).
93.
A.
Lowrey
and
K.
Watanabe
,
J. Chem. Phys.
28
,
208
(
1958
).
94.
G.
Fleming
,
M. M.
Anderson
,
A. J.
Harrison
, and
L. W.
Pickett
,
J. Chem. Phys.
30
,
351
(
1960
).
95.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
96.
E. V.
Doktorov
,
I. A.
Malkin
, and
V. I.
Manko
,
J. Mol. Spectrosc.
56
,
1
(
1975
).
97.
L. S.
Cederbaum
and
W.
Domcke
,
J. Chem. Phys.
64
,
603
(
1976
).
98.
W.
von Niessen
,
L. S.
Cederbaum
, and
W. P.
Kraemer
,
Theor. Chem. Acc.
44
,
85
(
1977
).
99.
M. L.
Daku
(private communication).
100.
A.
Migani
and
M.
Olivucci
, in
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
,
Advanced Series in Physical Chemistry
, Vol.
15
, Chap. 6, pp.
271
320
(
World Scientific
,
Singapore
,
2004
).
101.
D. M.
Leitner
,
J.
Quenneville
,
B.
Levine
,
T. J.
Martínez
, and
P. G.
Wolynes
,
J. Phys. Chem.
107
,
10706
(
2003
).
102.
B.
Levine
and
T. J.
Martínez
, in
Quantum Dynamics and Conical Intersections
, edited by
G. A.
Worth
and
S. C.
Allthorpe
(
CCP6
,
Daresbury
,
2004
), p.
65
.
103.
A.
Toniolo
,
B.
Levine
,
A.
Thompson
,
J.
Quenneville
,
M.
Ben-Nun
,
J.
Owens
,
S.
Olsen
,
J.
Manohar
, and
T. J.
Martínez
, in
Computational Methods in Organic Photochemistry
, edited by
A.
Kutateladze
(
Dekker
,
New York
,
2005
), p.
167
.
104.
S.
Olsen
,
A.
Toniolo
,
C.
Ko
,
L.
Manohar
, and
K.
Lamothe
, in
Computational Photochemistry
, edited by
M.
Olivucci
(
Elsevier
,
Amsterdam
,
2005
), p.
225
.
105.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, revision B.05,
Gaussian, Inc.
, Pittsburgh, PA,
2003
.
106.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
107.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
108.
G.
Herzberg
and
J.
Shoosmith
,
Can. J. Phys.
34
,
523
(
1956
).
109.
G.
Herzberg
,
Proc. R. Soc. London, Ser. A
262
,
291
(
1961
).
110.
M. B.
Smith
and
J.
March
,
March’s Advanced Organic Chemistry: Reactions Mechanisms and Structure
, 6th ed. (
Wiley Interscience
,
Toronto
,
2007
), p.
276
.
111.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
112.
M.
Levy
,
Phys. Rev. A
26
,
1200
(
1982
).
113.
M.
Levy
and
J.
Perdew
, in
Density Functional Methods in Physics
, edited by
R. M.
Dreizler
and
J.
da Providencia
(
Plenum
,
New York
,
1985
), p.
11
.
114.
P. W.
Ayers
and
W.
Yang
,
J. Chem. Phys.
124
,
224108
(
2006
).
115.
R. C.
Morrison
,
J. Chem. Phys.
117
,
10506
(
2002
).
116.
N. T.
Maitra
,
J. Chem. Phys.
122
,
234104
(
2005
).
117.
N. T.
Maitra
and
D. G.
Tempel
,
J. Chem. Phys.
125
,
184111
(
2006
).
118.
R. J.
Cave
,
F.
Zhang
,
N. T.
Maitra
, and
K.
Burke
,
Chem. Phys. Lett.
389
,
39
(
2004
).
119.
N. T.
Maitra
,
F.
Zhang
,
F. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
120.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
118
,
6874
(
2003
).
121.
Y.
Shao
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
118
,
4807
(
2003
).
122.
F.
Wang
and
T.
Ziegler
,
J. Chem. Phys.
121
,
12191
(
2004
).
123.
F.
Wang
and
T.
Ziegler
,
J. Chem. Phys.
122
,
074109
(
2005
).
124.
D. R.
Yarkony
,
J. Phys. Chem.
105
,
6277
(
2001
).
You do not currently have access to this content.