We present a new estimator for computing free energy differences and thermodynamic expectations as well as their uncertainties from samples obtained from multiple equilibrium states via either simulation or experiment. The estimator, which we call the multistate Bennett acceptance ratio estimator (MBAR) because it reduces to the Bennett acceptance ratio estimator (BAR) when only two states are considered, has significant advantages over multiple histogram reweighting methods for combining data from multiple states. It does not require the sampled energy range to be discretized to produce histograms, eliminating bias due to energy binning and significantly reducing the time complexity of computing a solution to the estimating equations in many cases. Additionally, an estimate of the statistical uncertainty is provided for all estimated quantities. In the large sample limit, MBAR is unbiased and has the lowest variance of any known estimator for making use of equilibrium data collected from multiple states. We illustrate this method by producing a highly precise estimate of the potential of mean force for a DNA hairpin system, combining data from multiple optical tweezer measurements under constant force bias.

1.

Here, a thermodynamic state is defined by a combination of potential energy function (including any biasing potentials) and external thermodynamic parameters, such as temperature, pressure, and chemical potential, all within the same thermodynamic ensemble [e.g., canonical, isothermal-isobaric and (semi)grand canonical].

2.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
3.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
,
451
(
1992
).
4.
K.
Hukushimi
and
K.
Nemoto
,
J. Phys. Soc. Jpn.
65
,
1604
(
1996
).
5.
W. J.
Greenleaf
,
M. T.
Woodside
,
E. A.
Abbondanzieri
, and
S. M.
Block
,
Phys. Rev. Lett.
95
,
208102
(
2005
).
6.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
7.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
8.
M. R.
Shirts
and
V. S.
Pande
,
J. Chem. Phys.
122
,
144107
(
2005
).
9.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
10.
M. R.
Shirts
,
E.
Bair
,
G.
Hooker
, and
V. S.
Pande
,
Phys. Rev. Lett.
91
,
140601
(
2003
).
11.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
12.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
13.
C.
Bartels
and
M.
Karplus
,
J. Comput. Chem.
18
,
1450
(
1997
).
14.
M. N.
Kobrak
,
J. Comput. Chem.
24
,
1437
(
2003
).
15.
E.
Gallicchio
,
M.
Andrec
,
A. K.
Felts
, and
R. M.
Levy
,
J. Phys. Chem. B
109
,
6722
(
2005
).
16.
S.
Park
,
D. L.
Ensign
, and
V. S.
Pande
,
Phys. Rev. E
74
,
066703
(
2006
).
17.
Y.
Vardi
,
Ann. Stat.
13
,
178
(
1985
).
18.
R. D.
Gill
,
Y.
Vardi
, and
J. A.
Wellner
,
Ann. Stat.
16
,
1069
(
1988
).
19.
A.
Kong
,
P.
McCullagh
,
X.-L.
Meng
,
D.
Nicolae
, and
Z.
Tan
,
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
65
,
585
(
2003
).
20.
Z.
Tan
,
J. Am. Stat. Assoc.
99
,
1027
(
2004
).
21.
E.
Mezei
,
J. Comput. Phys.
68
,
237
(
1987
).
22.
C.
Tsallis
,
J. Stat. Phys.
52
,
479
(
1988
).
23.
H.
Doss
makes this suggestion in the conference discussion of Ref. 19.
24.
C.
Bartels
,
Chem. Phys. Lett.
331
,
446
(
2000
).
25.
C. J.
Geyer
,
School of Statistics, University of Minnesota
, Minneapolis, Minnesota, Technical Report No. 568 (unpublished).
26.
M. T.
Woodside
,
W. M.
Behnke-Parks
,
K.
Larizadeh
,
K.
Travers
,
D.
Herschlag
, and
S. M.
Block
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
6190
(
2006
).
27.
J. D.
Chodera
,
W. C.
Swope
,
J. W.
Pitera
,
C.
Seok
, and
K. A.
Dill
,
J. Chem. Theory Comput.
3
,
26
(
2007
).
28.
M. T.
Woodside
,
P. C.
Anthony
,
W. M.
Behnke-Parks
,
K.
Larizadeh
,
D.
Herschlag
, and
S. M.
Block
,
Science
314
,
1001
(
2006
).
29.
M.
Souaille
and
B.
Roux
,
Comput. Phys. Commun.
135
,
40
(
2001
).
30.
P.
Maragakis
,
M.
Spichty
, and
M.
Karplus
,
Phys. Rev. Lett.
96
,
100602
(
2006
).
31.
W.
Janke
, in
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Murmatsu
(
John von Neumann Institute for Computing
,
Jülich, Germany
,
2002
), Vol.
10
, pp.
423
445
.
32.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
33.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
You do not currently have access to this content.