A self-consistent procedure for constructing a quasidiabatic Hamiltonian representing Nstate coupled electronic states in the vicinity of an arbitrary point in nuclear coordinate space is described. The matrix elements of the Hamiltonian are polynomials of arbitrary order. Employing a crude adiabatic basis, the coefficients of the linear terms are determined exactly using analytic gradient techniques. The remaining polynomial coefficients are determined from the normal form of a system of pseudolinear equations, which uses energy gradient and derivative coupling information obtained from reliable multireference configuration interaction wave functions. In a previous implementation energy gradient and derivative coupling information were employed to limit the number of nuclear configurations at which ab initio data were required to determine the unknown coefficients. Conversely, the key aspect of the current approach is the use of ab initio data over an extended range of nuclear configurations. The normal form of the system of pseudolinear equations is introduced here to obtain a least-squares fit to what would have been an (intractable) overcomplete set of data in the previous approach. This method provides a quasidiabatic representation that minimizes the residual derivative coupling in a least-squares sense, a means to extend the domain of accuracy of the diabatic Hamiltonian or refine its accuracy within a given domain, and a way to impose point group symmetry and hermiticity. These attributes are illustrated using the 1A12 and 1E2 states of the 1-propynyl radical, CH3CC.

1.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
094104
(
2007
).
2.
M. S.
Schuurman
,
D. E.
Weinberg
, and
D. R.
Yarkony
,
J. Chem. Phys.
127
,
104309
(
2007
).
3.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
128
,
044119
(
2008
).
4.
M. S.
Schuurman
and
D. R.
Yarkony
,
J. Chem. Phys.
129
,
064304
(
2008
).
5.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, in
Conical Intersections
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Koppel
(
World Scientific
,
River Edge, NJ
,
2004
), Vol.
15
, p.
323
.
6.
S. J.
Leon
,
Linear Algebra With Applications
(
Prentice-Hall
,
Upper Saddle River, NJ
,
2002
).
7.
F. T.
Smith
,
Phys. Rev.
179
,
111
(
1969
).
8.
M.
Baer
,
Chem. Phys.
15
,
49
(
1976
).
9.
Z.
Top
and
M.
Baer
,
Chem. Phys.
25
,
1
(
1977
).
10.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
11.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem.
104
,
389
(
2000
).
12.
T.
Vertesi
,
E.
Bene
,
A.
Vibok
,
G. J.
Halasz
, and
M.
Baer
,
J. Phys. Chem. A
109
,
3476
(
2005
).
13.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
109
,
20
(
1998
).
14.
R.
Abrol
and
A.
Kuppermann
,
J. Chem. Phys.
116
,
1035
(
2002
).
15.
A.
Macias
and
A.
Riera
,
J. Phys. B
11
,
L489
(
1978
).
16.
H.-J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5802
(
1981
).
17.
D. R.
Yarkony
,
J. Phys. Chem. A
102
,
8073
(
1998
).
18.
H.-J.
Werner
,
B.
Follmeg
, and
M. H.
Alexander
,
J. Chem. Phys.
89
,
3139
(
1988
).
19.
G. J.
Atchity
and
K.
Ruedenberg
,
Theor. Chem. Acc.
97
,
47
(
1997
).
20.
H.
Nakamura
and
D. G.
Truhlar
,
J. Chem. Phys.
117
,
5576
(
2002
).
21.
M.
Nooijen
,
Int. J. Quantum Chem.
95
,
768
(
2003
).
22.
M.
Baer
,
Chem. Phys. Lett.
35
,
112
(
1977
).
23.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
89
,
7367
(
1988
).
24.
L. S.
Cederbaum
,
J.
Schirmer
, and
H.-D.
Meyer
,
J. Phys. A
22
,
2427
(
1989
).
25.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
95
,
6668
(
1991
).
26.
L. S.
Cederbaum
,
H.
Köppel
, and
W.
Domke
,
Int. J. Quantum Chem.
, Suppl.
15
,
251
(
1981
).
27.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
Adv. Chem. Phys.
84
,
293
(
1993
).
28.
A.
Thiel
and
H.
Köppel
,
J. Chem. Phys.
110
,
9371
(
1999
).
29.
D. R.
Yarkony
,
J. Chem. Phys.
112
,
2111
(
2000
).
30.
H.
Köppel
,
J.
Gronki
, and
S.
Mahapatra
,
J. Chem. Phys.
115
,
2377
(
2001
).
31.
B. H.
Lengsfield
,
P.
Saxe
, and
D. R.
Yarkony
,
J. Chem. Phys.
81
,
4549
(
1984
).
32.
P.
Saxe
,
B. H.
Lengsfield
, and
D. R.
Yarkony
,
Chem. Phys. Lett.
113
,
159
(
1985
).
33.
D. R.
Yarkony
,
J. Chem. Phys.
105
,
10456
(
1996
).
34.
G.
Halasz
,
A.
Vibrok
, and
A.
Mebel
,
J. Chem. Phys.
118
,
3052
(
2003
).
35.
B. H.
Lengsfield
and
D. R.
Yarkony
, in
State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory
, edited by
M.
Baer
and
C.-Y.
Ng
(
J Wiley
,
New York
,
1992
), Vol.
82
, p.
1
.
36.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
37.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
38.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
39.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 3rd ed. (
The Johns Hopkins University Press
,
Baltimore, MD
,
1996
).
40.
R. L.
Branham
,
Scientific Data Analysis: An Introduction to Overdetermined Systems
(
Springer
,
Berlin
,
1990
).
41.
M.
Baer
,
Phys. Rep.
358
,
75
(
2002
).
42.
A.
Viel
and
W.
Eisfeld
,
J. Chem. Phys.
120
,
4603
(
2004
).
43.
W.
Eisfeld
and
A.
Viel
,
J. Chem. Phys.
122
,
204317
(
2005
).
44.
I.
Bersuker
,
The Jahn-Teller Effect
(
Cambridge University Press
,
Cambridge
,
2006
).
45.
M.
Tinkham
,
Group Theory and Quantum Mechanics
(
McGraw-Hill
,
New York
,
1964
).
46.
J.
Zhou
,
E.
Garand
,
W.
Eisfeld
, and
D. M.
Neumark
,
J. Chem. Phys.
127
,
034304
(
2007
).
47.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
48.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
49.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
P.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Alhrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Erhard
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
, and
J.-G.
Zhao
, COLUMBUS, an ab initio electronic structure program,
2003
.
50.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Chem. Phys.
95
,
1862
(
1991
).
51.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
52.
C. R.
Evenhuis
and
M. A.
Collins
,
J. Chem. Phys.
121
,
2515
(
2004
).
53.
R.
Englman
,
The Jahn-Teller Effect in Molecules and Crystals
(
Wiley-Interscience
,
New York
,
1972
).
You do not currently have access to this content.