Using classical density functional theory, the liquid crystal (LC)-mediated interaction between a cylindrical nanoparticle and a structured substrate is studied. The surface is structured by cutting a rectangular groove into the surface. In the absence of the nanoparticle, a range of defect structures is formed in the vicinity of the groove. By varying the groove width and depth, the LC-mediated interaction changes from repulsive to attractive. This interaction is strongest when the groove is of comparable size to the nanoparticle. For narrow grooves the nanoparticle is attracted to the center of the groove, while for wider grooves there is a free energy minimum near the sidewalls.

1.
G. A.
Ozin
and
A.
Arsenault
,
Nanochemistry: A Chemical Approach to Nanomaterials
(
RSC
,
Cambridge
,
2005
).
2.
H.
Zhang
,
E. W.
Edwards
,
D. Y.
Wang
, and
H.
Möhwald
,
Phys. Chem. Chem. Phys.
8
,
3288
(
2006
).
3.
D.
Wang
and
H.
Möhwald
,
J. Mater. Chem.
14
,
459
(
2004
).
4.
P.
Poulin
,
H.
Stark
,
T. C.
Lubensky
, and
D. A.
Weitz
,
Science
275
,
1770
(
1997
).
5.
J.-C.
Loudet
,
P.
Barios
, and
P.
Poulin
,
Nature (London)
407
,
611
(
2000
).
6.
V. G.
Nazarenko
,
A. B.
Nych
, and
B. I.
Lev
,
Phys. Rev. Lett.
87
,
077504
(
2001
).
7.
I.
Muševič
,
M.
Skarabot
,
U.
Tkalec
,
M.
Ravnik
, and
S.
Zumer
,
Science
313
,
954
(
2006
).
8.
M.
Lynch
and
D.
Patrick
,
Nano Lett.
2
,
1197
(
2002
).
9.
I.
Dierking
,
G.
Scalia
, and
P.
Morales
,
J. Appl. Phys.
97
,
044309
(
2005
).
10.
I.
Dierking
,
G.
Scalia
,
P.
Morales
, and
D.
LeClare
,
Adv. Mater. (Weinheim, Ger.)
16
,
865
(
2004
).
11.
J.
Müller
,
C.
Sönnichsen
,
H.
von Poschinger
,
G.
von Plessen
,
T. A.
Klar
, and
J.
Feldmann
,
Appl. Phys. Lett.
81
,
171
(
2002
).
12.
S.-C.
Jeng
,
C.-W.
Kuo
,
H.-L.
Wang
, and
C.-C.
Liao
,
Appl. Phys. Lett.
91
,
061112
(
2007
).
13.
I.
Dierking
and
S. E.
San
,
Appl. Phys. Lett.
87
,
233507
(
2005
).
14.
J. S.
van Duijneveldt
,
S.
Klein
,
E.
Leach
,
C.
Pizzey
, and
R. M.
Richardson
,
J. Phys.: Condens. Matter
17
,
2255
(
2005
).
15.
S.
Kumar
and
H. R.
Bisoyi
,
Angew. Chem., Int. Ed.
46
,
1501
(
2007
).
16.
J.
Lagerwall
,
G.
Scalia
,
M.
Haluska
,
U.
Dettlaff-Weglikowska
,
S.
Roth
, and
F.
Giesselmann
,
Adv. Mater. (Weinheim, Ger.)
19
,
359
(
2007
).
17.
T.
Hegmann
,
H.
Qi
, and
V. M.
Marx
,
J. Inorg. Organomet. Polym.
17
,
483
(
2007
).
18.
J. L.
Billeter
and
R. A.
Pelcovits
,
Phys. Rev. E
62
,
711
(
2000
).
19.
D.
Andrienko
,
G.
Germano
, and
M. P.
Allen
,
Phys. Rev. E
63
,
041701
(
2001
).
20.
D.
Andrienko
,
M. P.
Allen
,
G.
Skačej
, and
S.
Žumer
,
Phys. Rev. E
65
,
041702
(
2002
).
21.
E. B.
Kim
,
R.
Faller
,
Q.
Yan
,
N. L.
Abbot
, and
J. J.
de Pablo
,
J. Chem. Phys.
117
,
7781
(
2002
).
22.
M.
Al-Barwani
,
G.
Sutcliffe
, and
M.
Allen
,
J. Phys. Chem. B
108
,
6663
(
2004
).
23.
O.
Guzmán
,
E. B.
Kim
,
S.
Grollau
,
N. L.
Abbott
, and
J. J.
de Pablo
,
Phys. Rev. Lett.
91
,
235507
(
2003
).
24.
E. B.
Kim
,
O.
Guzmán
,
S.
Grollau
,
N. L.
Abbott
, and
J. J.
de Pablo
,
J. Chem. Phys.
121
,
1949
(
2004
).
25.
P.
Patrício
,
M.
Tasinkevych
, and
M. M.
Telo da Gama
,
Eur. Phys. J. E
7
,
117
(
2002
).
26.
M.
Tasinkevych
,
N. M.
Silvestre
,
P.
Patrício
, and
M. M.
Telo da Gama
,
Eur. Phys. J. E
9
,
341
(
2002
).
27.
S.
Grollau
,
E. B.
Kim
,
O.
Guzmán
,
N. L.
Abbott
, and
J. J.
de Pablo
,
J. Chem. Phys.
119
,
2444
(
2003
).
28.
D.
Andrienko
,
M.
Tasinkevych
,
P.
Patricio
,
M. P.
Allen
, and
M. M.
Telo da Gama
,
Phys. Rev. E
68
,
051702
(
2003
).
29.
D.
Andrienko
,
M.
Tasinkevych
,
P.
Patrício
, and
M. M. T.
da Gama
,
Phys. Rev. E
69
,
021706
(
2004
).
30.
J.-I.
Fukuda
,
H.
Stark
,
M.
Yoneya
, and
H.
Yokoyama
,
Phys. Rev. E
69
,
041706
(
2004
).
31.
F. R.
Hung
,
B. T.
Gettelfinger
,
J.
Gary
,
M.
Koenig
,
N. L.
Abbott
, and
J. J.
de Pablo
,
J. Chem. Phys.
127
,
124702
(
2007
).
32.
D. L.
Cheung
and
M. P.
Allen
,
Phys. Rev. E
74
,
021701
(
2006
).
33.
D. L.
Cheung
and
M. P.
Allen
,
Phys. Rev. E
76
,
041706
(
2007
).
34.
D. L.
Cheung
and
M. P.
Allen
,
Langmuir
24
,
1411
(
2008
).
35.
T. G.
Sokolovska
,
R. O.
Sokolovskii
, and
G. N.
Patey
,
J. Comput. Phys.
122
,
124907
(
2005
).
36.
T. G.
Sokolovska
,
R. O.
Sokolovskii
, and
G. N.
Patey
,
Phys. Rev. E
73
,
020701
(
2006
).
37.
T. G.
Sokolovska
,
R. O.
Sokolovskii
, and
G. N.
Patey
,
Phys. Rev. E
77
,
041701
(
2008
).
38.
V. K.
Gupta
,
J. J.
Skaife
,
T. B.
Dubrovsky
, and
N. L.
Abbot
,
Science
279
,
2077
(
1998
).
39.
T.
Govindaraju
,
P. J.
Bertics
,
R. T.
Raines
, and
N. L.
Abbot
,
J. Am. Chem. Soc.
129
,
11223
(
2007
).
40.
N. M.
Silvestre
,
P.
Patricio
, and
M. M. T.
da Gama
,
Phys. Rev. E
69
,
061402
(
2004
).
41.
G.
McKay
and
E. G.
Virga
,
Phys. Rev. E
71
,
041702
(
2005
).
42.
43.
D.
Andrienko
and
M. P.
Allen
,
Phys. Rev. E
65
,
021704
(
2002
).
44.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic
,
London
,
1986
).
45.
46.
P. J.
Camp
,
C. P.
Mason
,
M. P.
Allen
,
A. A.
Khare
, and
D. A.
Kofke
,
J. Chem. Phys.
105
,
2837
(
1996
).
47.
A. M.
Somoza
and
P.
Tarazona
,
J. Chem. Phys.
91
,
517
(
1989
).
48.
G.
Cinacchi
and
F.
Schmid
,
J. Phys.: Condens. Matter
14
,
12223
(
2002
).
49.
A.
Esztermann
,
H.
Reich
, and
M.
Schmidt
,
Phys. Rev. E
73
,
011409
(
2006
).
50.
J. J.
Skaife
,
J. M.
Brake
, and
N. L.
Abbott
,
Langmuir
17
,
5448
(
2001
).
51.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press
,
Cambridge
,
1986
).
52.
V. I.
Lebedev
,
Zh.
Vychisl
,
Zh. Vychisl. Mat. Mat. Fiz.
16
,
293
(
1976
)
V. I.
Lebedev
,
Zh.
Vychisl
, [
USSR Comput. Math. Math. Phys.
16
,
10
(
1976
)].
53.
V. I.
Lebedev
,
Sib. Math. J.
18
,
132
(
1977
).
54.
H.
Löwen
,
P. A.
Madden
, and
J.-P.
Hansen
,
Phys. Rev. Lett.
68
,
1081
(
1992
).
55.
H.
Löwen
,
J.-P.
Hansen
, and
P. A.
Madden
,
J. Chem. Phys.
98
,
3275
(
1993
).
56.
A. D.
Dinsmore
and
A. G.
Yodh
,
Langmuir
15
,
314
(
1999
).
You do not currently have access to this content.