The NaNO3 droplets with sizes of 15μm generated from a nebulizer were deposited on a ZnSe substrate in a Fourier transform infrared attenuated total reflection (FTIR-ATR) chamber. After solidification of the droplets with dry N2 gas passing through the chamber, the solid NaNO3 particles were monitored by in situ FTIR-ATR spectra in cycles of deliquescence and efflorescence processes with varying relative humidities (RHs). With an increase in the RH, a dominant peak at 3539cm1, together with three relatively weak peaks at 3400, 3272, and 3167cm1, in the O–H stretching band of water was resolved by the high signal-to-noise ratio FTIR-ATR spectra. The dominant peak and the three relatively weak peaks were contributed by the water monomers and the aggregated water molecules adsorbed on the surfaces of solid NaNO3 particles, respectively. When the RH approached 72%, slightly lower than the deliquescence RH (74.5%), the band component at 3400cm1 became the main peak, indicating that the water monomers and the aggregated water molecules aggregated to form a thin water layer on the surfaces of solid NaNO3 particles. A splitting of the ν3-NO3 band at 1363 and 1390cm1 at the RH of 72%, instead of the single ν3-NO3 band at 1357cm1 for the initial solid NaNO3, was observed. We suggested that this reflected a phase transition from the initial solid to a metastable solid phase of NaNO3. The metastable solid phase deliquesced completely in the region from 87% to 96% RH according to the fact that the ν3-NO3 band showed two overlapping peaks at 1348 and 1405cm1 similar to those of bulk NaNO3 solutions. In the efflorescence process of the NaNO3 droplets, the ν1-NO3 band presented a continuous blueshift from 1049cm1 at 77% RH to 1055cm1 at 36% RH, indicating the formation of contact ion pairs between Na+ and NO3. Moreover, in the RH range from 53% down to 26%, two peaks at 836 and 829cm1 were observed in the ν2-NO3 band region, demonstrating the coexistence of NaNO3 solid particles and droplets.

1.
P. K.
Mogili
,
P. D.
Kleiber
,
M. A.
Young
, and
V. H.
Grassian
,
J. Phys. Chem. A
110
,
13799
(
2006
).
2.
B. J.
Finlayson-Pitts
and
J. C.
Hemminger
,
J. Phys. Chem. A
104
,
11463
(
2000
).
3.
V. H.
Grassian
,
Int. Rev. Phys. Chem.
20
,
467
(
2001
).
4.
A. S.
Ansari
and
S. N.
Pandis
,
Atmos. Environ.
34
,
157
(
2000
).
5.
S. T.
Martin
,
Chem. Rev. (Washington, D.C.)
100
,
3403
(
2000
).
6.
W.
Ostwald
,
Zeitschrift fur Physikalische Chemie
22
,
289
(
1879
).
7.
T.
Threlfall
,
Org. Process Res. Dev.
7
,
1017
(
2003
).
8.
I. N.
Tang
and
H. R.
Munkelwitz
,
J. Geophys. Res.
99
,
18801
(
1994
).
9.
I. N.
Tang
and
K. H.
Fung
,
J. Chem. Phys.
106
,
1653
(
1997
).
10.
C. T.
Lee
and
W. C.
Hsu
,
J. Aerosol Sci.
31
,
189
(
2000
).
11.
M.
Gysel
,
E.
Weingartner
, and
U.
Baltensperger
,
Environ. Sci. Technol.
36
,
63
(
2002
).
12.
E. R.
Gibson
,
P. K.
Hudson
, and
V. H.
Grassian
,
J. Phys. Chem. A
110
,
11785
(
2006
).
13.
R. C.
Hoffman
,
A.
Laskin
, and
B. J.
Finlayson-Pitts
,
J. Aerosol Sci.
35
,
869
(
2004
).
14.
Y.
Liu
,
Z.
Yang
,
Y.
Desyaterik
,
P. L.
Gassman
,
H.
Wang
, and
A.
Laskin
,
Anal. Chem.
80
,
633
(
2008
).
15.
X. H.
Li
,
F.
Wang
,
P. D.
Lu
,
J. L.
Dong
,
L. Y.
Wang
, and
Y. H.
Zhang
,
J. Phys. Chem. B
110
,
24993
(
2006
).
16.
E. V.
Kiryanova
,
J. Cryst. Growth
253
,
452
(
2003
).
17.
Y. H.
Zhang
,
Y. A.
Hu
,
F.
Ding
, and
L. J.
Zhao
,
Chin. Sci. Bull.
50
,
2149
(
2005
).
18.
J.
Schuttlefield
,
H.
Al-Hosney
,
A.
Zachariah
, and
V. H.
Grassian
,
Appl. Spectrosc.
61
,
283
(
2007
).
19.
F. M.
Mirabella
,
Principles, Theory, and Practice of Internal Reflection Spectroscopy
, in
Internal Reflection Spectroscopy: Theory and Applications
(
CRC Press
,
New York
,
1992
), pp.
17
52
.
20.
L. J.
Zhao
,
Y. H.
Zhang
,
Y. A.
Hu
, and
F.
Ding
,
Atmos. Res.
83
,
10
(
2007
).
21.
E. D.
Palik
and
R.
Khanna
, Sodium Nitrate (NaNO3), in
Handbook of Optical Constants of Solids
(
Academic
,
New York
,
1997
), Vol.
3
, p.
871
.
22.
F. A.
Miller
and
C. H.
Wilkins
,
Anal. Chem.
24
,
1253
(
1952
).
23.
D.
Fox
and
R. M.
Hexter
,
J. Chem. Phys.
41
,
1125
(
1964
).
24.
D.
Sporleder
and
G. E.
Ewing
,
J. Phys. Chem. A
105
,
1838
(
2001
).
25.
J. P.
Devlin
,
P.
Pollard
, and
R.
Frech
,
J. Phys. Chem.
53
,
4147
(
1970
).
26.
S. J.
Peters
and
G. E.
Ewing
,
J. Phys. Chem.
100
,
14093
(
1996
).
27.
R. B.
Vogt
and
J.
Finlayson-Pitts
,
J. Phys. Chem.
98
,
3747
(
1994
).
28.
D. E.
Irish
and
G. E.
Walrafen
,
J. Chem. Phys.
46
,
378
(
1967
).
29.
L. J.
Zhao
,
Y. H.
Zhang
,
L. Y.
Wang
,
Y. A.
Hu
, and
F.
Ding
,
Phys. Chem. Chem. Phys.
7
,
2723
(
2005
).
30.
F.
Wang
,
Y. H.
Zhang
,
S. H.
Li
,
L. Y.
Wang
, and
L. J.
Zhao
,
Anal. Chem.
77
,
7148
(
2005
).
31.
Y. H.
Zhang
and
C. K.
Chan
,
J. Phys. Chem. A
107
,
5956
(
2003
).
32.
Y. H.
Zhang
,
M. Y.
Choi
, and
C. K.
Chan
,
J. Phys. Chem. A
108
,
1712
(
2004
).
33.
G. E.
Walrafen
,
J. Chem. Phys.
50
,
567
(
1969
).
34.
H.
Kanno
and
J.
Hiraishi
,
Chem. Phys. Lett.
83
,
452
(
1981
).
35.
I. S.
Perelygin
and
N. R.
Safiullina
,
Zh. Strukt. Khim.
8
,
205
(
1967
).
36.
L. D.
Shcherba
and
A. M.
Sukhotin
,
Zh. Fiz. Khim.
33
,
2401
(
1959
).
37.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
38.
J. Y.
Cho
,
J. M.
Park
, and
K. S.
Kim
,
Phys. Rev. B
62
,
9981
(
2000
).
39.
C.
Xu
and
D. W.
Goodman
,
Chem. Phys. Lett.
265
,
341
(
1997
).
40.
M. A.
Henderson
,
Langmuir
12
,
5093
(
1996
).
41.
H.
Du
and
J. D.
Miller
,
J. Phys. Chem. C
111
,
10013
(
2007
).
42.
C.
Orr
, Jr.
,
F. K.
Hurd
, and
W. J.
Corbett
,
J. Colloid Sci.
13
,
472
(
1958
).
43.
R.
Bahadur
,
M. L.
Russell
,
S.
Alavi
,
S. T.
Martin
, and
P. R.
Buseck
,
J. Chem. Phys.
124
,
154713
(
2006
).
44.
W.
Cantrell
,
C.
McCrory
, and
G. E.
Ewing
,
J. Chem. Phys.
116
,
2116
(
2002
).
You do not currently have access to this content.