A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some “difficult problems,” such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybrid density functionals.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
L. J.
Sham
and
W.
Kohn
,
Phys. Rev.
145
,
561
(
1966
).
4.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
5.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many Body Problem
(
Springer-Verlag
,
Berlin
,
1990
).
6.
M. E.
Casida
,
Recent Advances in Density Functional Methods
(
World Scientific
,
Singapore
,
1995
), Pt. 1.
7.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
, in
Density Functional Theory II
(
Springer
,
Heidelberg
,
1996
).
8.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
9.
T.
Bally
and
G. N.
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
);
B.
Braïda
,
P. C.
Hiberty
, and
A.
Savin
,
J. Phys. Chem. A
102
,
7872
(
1998
);
M.
Grüning
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Phys. Chem. A
105
,
9211
(
2001
);
D. J.
Tozer
,
N. C.
Handy
, and
A. J.
Cohen
,
Chem. Phys. Lett.
382
,
203
(
2003
);
M.
Lundberg
and
P. E. M.
Siegbahn
,
J. Chem. Phys.
122
,
224103
(
2005
);
[PubMed]
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
125
,
201102
(
2006
);
[PubMed]
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
126
,
104102
(
2007
).
[PubMed]
10.
A. D.
Dutoi
and
M.
Head-Gordon
,
Chem. Phys. Lett.
422
,
230
(
2006
).
11.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Phys. Chem.
119
,
2943
(
2003
).
12.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
13.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev. (Washington, D.C.)
105
,
4009
(
2005
).
14.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
15.
A. D.
Boese
and
J. M. L.
Martin
,
J. Chem. Phys.
121
,
3405
(
2004
).
16.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
17.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
18.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
19.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
20.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
21.
T.
Van Voorhis
and
G. E.
Scuseria
,
J. Chem. Phys.
109
,
400
(
1998
).
22.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
23.
P. J.
Wilson
,
T. J.
Bradley
, and
D. J.
Tozer
,
J. Chem. Phys.
115
,
9233
(
2001
).
24.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
123
,
121103
(
2005
).
25.
A. D.
Boese
,
N.
Doltsinis
,
N. C.
Handy
, and
M.
Sprik
,
J. Chem. Phys.
112
,
1670
(
2000
).
26.
A. D.
Boese
and
N. C.
Handy
,
J. Chem. Phys.
114
,
5497
(
2001
).
27.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
28.
A. D.
Becke
,
J. Chem. Phys.
119
,
2972
(
2003
);
A. D.
Becke
,
J. Chem. Phys.
122
,
064101
(
2005
).
[PubMed]
29.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
);
V.
Sahni
,
J.
Gruenebaum
, and
J. P.
Perdew
,
Phys. Rev. B
26
,
4371
(
1982
);
T.
Grabo
,
T.
Kreibich
, and
E. K. U.
Gross
,
Mol. Eng.
7
,
27
(
1997
).
30.
H.
Stoll
and
A.
Savin
, in
Density Functional Methods in Physics
, edited by
R. M.
Dreizler
and
J. d.
Providencia
(
Plenum
,
New York
,
1985
), p.
177
.
31.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
32.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
33.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
J. Chem. Phys.
122
,
014110
(
2005
).
34.
J. G.
Ángyán
,
I. C.
Gerber
,
A.
Savin
, and
J.
Toulouse
,
Phys. Rev. A
72
,
012510
(
2005
).
35.
E.
Goll
,
H.-J.
Werner
, and
H.
Stoll
,
Phys. Chem. Chem. Phys.
7
,
3917
(
2005
).
36.
E.
Goll
,
H.-J.
Werner
,
H.
Stoll
,
T.
Leininger
,
P.
Gori-Giorgi
, and
A.
Savin
,
Chem. Phys.
329
,
276
(
2006
).
37.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
38.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
39.
I. C.
Gerber
and
J. G.
Ángyán
,
Chem. Phys. Lett.
415
,
100
(
2005
).
40.
I. C.
Gerber
,
J. G.
Ángyán
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
127
,
054101
(
2007
).
41.
O. A.
Vydrov
,
J.
Heyd
,
A. V.
Krukau
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
074106
(
2006
).
42.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
43.
J.-W.
Song
,
T.
Hirosawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
126
,
154105
(
2007
).
44.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
J. Chem. Phys.
126
,
191109
(
2007
).
45.
P. M. W.
Gill
,
R. D.
Adamson
, and
J. A.
Pople
,
Mol. Phys.
88
,
1005
(
1996
).
46.
R. D.
Adamson
,
J. P.
Dombroski
, and
P. M. W.
Gill
,
J. Comput. Chem.
20
,
921
(
1999
).
47.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
48.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
49.
H.
Stoll
,
C. M. E.
Pavlidou
, and
H.
Preuss
,
Theor. Chim. Acta
49
,
143
(
1978
);
H.
Stoll
,
E.
Golka
, and
H.
Preuss
,
Theor. Chim. Acta
55
,
29
(
1980
).
50.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
Fischer
,
Phys. Rev. A
47
,
3649
(
1993
).
51.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
52.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
53.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
).
54.
J. A.
Pople
,
M.
Head-Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
,
J. Chem. Phys.
90
,
5622
(
1989
).
55.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
2715
(
2004
).
56.
Y.
Zhao
,
N.
González-García
, and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
2012
(
2005
);
[PubMed]
Y.
Zhao
,
N.
González-García
, and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
4942
E
(
2006
).
57.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
58.
E.
Fromager
,
J.
Toulouse
, and
H. J. A.
Jensen
,
J. Chem. Phys.
126
,
074111
(
2007
).
59.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
Distasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
, III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
, III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
60.
P. M. W.
Gill
,
B. G.
Johnson
, and
J. A.
Pople
,
Chem. Phys. Lett.
209
,
506
(
1993
).
61.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
114
,
108
(
2001
).
62.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
124
,
091102
(
2006
).
63.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
64.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
123
,
124107
(
2005
).
65.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
126
,
084108
(
2007
).
66.
Experimental values for Br atoms are taken from NIST-JANAF Thermochemical Tables, edited by
M. W.
Chase
, Jr.
, fourth edition (
1998
). The enthalpy of formation at 0K for gaseous Br atom ΔHf0(0K)=28.18kcalmol, and the temperature correction (H298H0)=2.929kcalmol.
67.
C. W.
Murray
,
N. C.
Handy
, and
G. J.
Laming
,
Mol. Phys.
78
,
997
(
1993
).
68.
V. I.
Lebedev
and
D. N.
Laikov
,
Dokl. Math.
59
,
477
(
1999
), and references therein.
69.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
70.
R. A.
DiStasio
, Jr.
,
R. P.
Steele
,
Y. M.
Rhee
,
Y.
Shao
, and
M.
Head-Gordon
,
J. Comput. Chem.
28
,
839
(
2007
).
71.
L. J.
Schaad
and
W. V.
Hicks
,
J. Chem. Phys.
53
,
851
(
1970
).
72.
J.
Xie
,
B.
Poirier
, and
G. I.
Gellene
,
J. Chem. Phys.
122
,
184310
(
2005
).
73.
A.
Carrington
,
D. I.
Gammie
,
J. C.
Page
,
A. M.
Shaw
, and
J. M.
Hutson
,
J. Chem. Phys.
116
,
3662
(
2002
).
74.
A.
Wüest
and
F.
Merkt
,
J. Chem. Phys.
120
,
638
(
2004
).
75.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
76.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
77.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
78.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
(
2006
).
You do not currently have access to this content.