Open-system quantum optimal control theory for optical control of the dynamics of a quantum system in contact with a dissipative bath is used here for explicitly time-dependent target operators, Ô(t). Global and local control strategies are combined in a novel algorithm by defining a set of time slices, into which the total control time is subdivided. The optimization then proceeds locally forward in time from subinterval to subinterval, while within each subinterval global control theory is used with iterative forward-backward propagation. The subintervals are connected by appropriate boundary conditions. In the present paper, all operators are represented in the basis of the eigenstates of the field-free system Hamiltonian. The algorithm is first applied to and its computational performance tested for a two-level system with energy and phase relaxation, and later extended to a many-level model. Model parameters are chosen to represent the IR pulse excitation of the adsorbate-surface stretch mode of vibrationally relaxing CO on a Cu(100) surface. Various time-dependent targets are formulated to achieve (i) population inversion, (ii) the creation of a wavepacket, and (iii) overtone excitation by “ladder climbing.”

1.
M.
Shapiro
and
P.
Brumer
,
Principles of the Quantum Control of Molecular Processes
(
Wiley
,
Hoboken
,
2003
), and references therein.
2.
R. J.
Levis
,
G. M.
Menkir
, and
H.
Rabitz
,
Science
292
,
709
(
2001
).
3.
A. P.
Peirce
,
M. A.
Dahleh
, and
H.
Rabitz
,
Phys. Rev. A
37
,
4950
(
1988
).
4.
R.
Kosloff
,
A.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D. J.
Tannor
,
Chem. Phys.
139
,
201
(
1989
).
5.
Y. J.
Yan
,
R. E.
Gillilan
,
R. M.
Whitnell
,
K. R.
Wilson
, and
S.
Mukamel
,
J. Phys. Chem.
97
,
2320
(
1993
).
6.
P.
Gross
,
D.
Neuhauser
, and
H.
Rabitz
,
J. Chem. Phys.
94
,
1158
(
1991
).
7.
Y.
Ohtsuki
,
W.
Zhu
, and
H.
Rabitz
,
J. Chem. Phys.
110
,
9825
(
1999
).
8.
A.
Bartana
,
R.
Kosloff
, and
D. J.
Tannor
,
Chem. Phys.
267
,
195
(
2001
).
9.
Y.
Ohtsuki
,
K.
Nakagami
,
W.
Zhu
, and
H.
Rabitz
,
Chem. Phys.
287
,
197
(
2003
).
10.
T.
Mančal
,
U.
Kleinekathöfer
, and
V.
May
,
J. Chem. Phys.
117
,
636
(
2002
).
11.
Y.
Ohtsuki
,
Y.
Teranishi
,
P.
Saalfrank
,
G.
Turinici
, and
H.
Rabitz
,
Phys. Rev. A
75
,
033407
(
2007
).
12.
Y.
Ohtsuki
,
K.
Nakagami
,
Y.
Fujimura
,
W.
Zhu
, and
H.
Rabitz
,
J. Chem. Phys.
114
,
8867
(
2001
).
13.
J.
Somlói
,
V. A.
Kazakov
, and
D. J.
Tannor
,
Chem. Phys.
172
,
85
(
1993
).
14.
W.
Zhu
and
H.
Rabitz
,
J. Chem. Phys.
109
,
385
(
1998
).
15.
Y.
Ohtsuki
,
Y.
Yahata
,
H.
Kono
, and
Y.
Fujimura
,
Chem. Phys. Lett.
287
,
627
(
1998
).
16.
K.
Nakagami
,
Y.
Ohtsuki
, and
Y.
Fujimura
,
Chem. Phys. Lett.
360
,
91
(
2002
).
17.
C.
Tesch
and
R.
de Vivie-Riedle
,
Phys. Rev. Lett.
89
,
157901
(
2002
).
18.
J. P.
Palao
and
R.
Kosloff
,
Phys. Rev. Lett.
89
,
188301
(
2002
).
19.
I.
Grigorenko
,
M. E.
Garcia
, and
K. H.
Bennemann
,
Phys. Rev. Lett.
89
,
233003
(
2002
).
20.
A.
Kaiser
and
V.
May
,
J. Chem. Phys.
121
,
2528
(
2004
).
21.
R.
Xu
,
J.
Cheng
, and
Y. J.
Yan
,
J. Phys. Chem. A
103
,
10611
(
1999
).
22.
W.
Zhu
and
H.
Rabitz
,
J. Chem. Phys.
119
,
3619
(
2003
).
23.
M.
Sugawara
,
J. Chem. Phys.
118
,
6784
(
2003
).
24.
Y.
Ohtsuki
,
G.
Turinici
, and
H.
Rabitz
,
J. Chem. Phys.
120
,
5509
(
2004
).
25.
I.
Serban
,
J.
Werschnik
, and
E. K. U.
Gross
,
Phys. Rev. A
71
,
053810
(
2005
).
26.
S.
Beyvers
,
Y.
Ohtsuki
, and
P.
Saalfrank
,
J. Chem. Phys.
124
,
234706
(
2006
).
27.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
28.
Ch.
Scheurer
and
P.
Saalfrank
,
Chem. Phys. Lett.
245
,
201
(
1995
);
Ch.
Scheurer
and
P.
Saalfrank
,
J. Chem. Phys.
104
,
2869
(
1996
).
29.
T.
Klamroth
,
P.
Saalfrank
, and
U.
Höfer
,
Phys. Rev. B
64
,
035420
(
2001
).
30.
T.
Vazhappilly
,
S.
Beyvers
,
T.
Klamroth
,
M.
Luppi
, and
P.
Saalfrank
,
Chem. Phys.
338
,
299
(
2007
).
31.
J. C.
Tully
,
M.
Gomez
, and
M.
Head-Gordon
,
J. Vac. Sci. Technol. A
11
,
1914
(
1993
).
32.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
).
33.

The complex phase factor in Eq. (16) is motivated from the exact solution of a two-level system with dephasing. It appears to be necessary for the present algorithm in order to produce oscillating electric fields, rather than non-oscillatory ones.

34.
P.
Saalfrank
and
G. K.
Paramonov
,
J. Chem. Phys.
107
,
10723
(
1997
).
35.
P.
Saalfrank
and
G. K.
Paramonov
,
J. Chem. Phys.
110
,
6500
(
1999
).
36.
G. K.
Paramonov
,
S.
Beyvers
,
I.
Andrianov
, and
P.
Saalfrank
,
Phys. Rev. B
75
,
045405
(
2007
).
You do not currently have access to this content.